Project description:AtRAP, which is a bacterial-induced small RNA target gene, negatively regulate plant defense response. To identity genes that are regulated by AtRAP, we performed microarray analysis on the (Wild Type) WT and atrap mutant.
Project description:To exlore more circRNAs involved in Arabidopsis thaliana, we deeply sequenced 14 samples including whole plants from four developmental stages (rosette leaves > 1 mm in length; rosette growth complete; 50% of flowers to be produced have opened; first silique shattered), aerial part of plants from four stress treatments (control, drought, salinity and heat), five organs (roots, stems, leaves, flowers and siliques) and a mixed sample from whole plants across the lifespan (cotyledons emergence, rosette leaves﹥1 mm, rosette growth complete, first flower open, flourishing florescence, first silique shattered, senescence). The total RNA was purified by rRNA-depletion and linear RNA removal with RNAseR, and paired-end (PE) sequenced by Illumina HiSeq 2500 (read length, PE125, the mixed sample) and Illumina Hiseq X Ten (read length, PE150, 13 independent samples) platforms. We obtained 181.97 Gb raw data (151.37 Gb from 13 samples and 30.6 Gb from a mixed sample) and identified 5861 circRNAs with expression quantity. We annotated the parent genes of these circRNAs and predicted their target sites of microRNAs.
Project description:To explore the overall long noncoding RNA (lncRNA) involved in growth and development of Arabidopsis thaliana across the lifespan, we deeply sequenced samples of whole plants from different developmental stages (4 rosette leaves>1mm, 14 rosette leaves>1mm, rosette growth complete, first flower buds visible, flourishing florescence, first silique shattered, senescence) using strand-specific RNA sequencing (ssRNA-seq) menthod. We obtained 28.8 Gb raw data and identified 156 novel lncRNAs (unreported in all public plant lncRNA databases) . We also categorized the novel lncRNAs as intergenic, intronic, antisense, overlapped with perhaps pseudogenes and mRNA based on their location on the Arabidopsis genome. Furthermore, lncRNAs targeted protein-coding genes were predicted and functional annotated. In addition, we constructed a network of interactions between ncRNAs (miRNAs, lncRNA) and mRNAs. Our results suggest that the identified novel lncRNAs are important in modulating development process of Arabidopsis, and provide a rich resource for further research on the function of these novel lncRNAs.