Project description:This SuperSeries is composed of the following subset Series: GSE26981: Responses to ectoparasite salmon louse (Lepeophtheirus salmonis) in skin of Atlantic salmon GSE26984: Responses to ectoparasite salmon louse (Lepeophtheirus salmonis) in spleen of Atlantic salmon Refer to individual Series
Project description:This study investigates host-specific gene expression of the Pacific salmon lice, Lepeophtheirus salmonis oncorhynchii, while parasitizing a resistant host (Coho salmon), two susceptible hosts (Atlantic salmon, Sockeye salmon), and a population with-held hosts (starved), over 48 hrs.
2017-01-25 | GSE80220 | GEO
Project description:Responses to ectoparasite salmon louse (Lepeophtheirus salmonis) in Atlantic salmon
Project description:An effective and economical vaccine against the Piscirickettsia salmonis pathogen is needed for sustainable salmon farming and to reduce disease-related economic losses. Consequently, the aquaculture industry urgently needs to investigate efficient prophylactic measures. Three protein-based vaccine prototypes against Piscirickettsia salmonis were prepared from a highly pathogenic Chilean isolate. Only one vaccine effectively protected Atlantic salmon (Salmo salar), in correlation with the induction of Piscirickettsia-specific IgM antibodies and a high induction of transcripts encoding pro-inflammatory cytokines (i.e. Il-1β and TNF-α). In addition, we studied the proteome fraction protein of P. salmonis strain Austral-005 using multidimensional protein identification technology. The analyzes identified 87 proteins of different subcellular origins, such as the cytoplasmic and membrane compartment, where many of them have virulence functions. The other two prototypes activated only the innate immune responses, but did not protect Salmo salar against Piscirickettsia salmonis. These results suggest that the knowledge of the formulation of vaccines based on P. salmonis proteins is useful as an effective therapy, this demonstrates the importance of the different research tools to improve the study of the different immune responses, resistance to diseases in the Atlantic salmon. We suggest that this vaccine can help prevent widespread infection by P. salmonis, in addition to being able to be used as a booster after a primary vaccine to maintain high levels of circulating protective antibodies, greatly helping to reduce the economic losses caused by the pathogen.
Project description:This study investigates transcriptomic responses of Atlantic salmon lice, Lepeophtheirus salmonis exposed to cypermethrin, a commonly used antiparasitic agent used in aquaculture. Copepodid L. salmonis were exposed to cypermethrin (Betamax®) at a concentration of 1.0ppb
Project description:Background: Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. Results: We characterised the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12h, 24h, 36h, 48h, and 60h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. Conclusions: Our results highlight the key role of keratinocytes in coho salmon’s sea lice resistance, and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Project description:Characterisation of the maternal yolk associated protein (LsYAP) and establishment of systemic RNA interference in the salmon louse (Lepeophtheirus salmonis) (Crustacea, Copepoda)
Project description:We investigate the effect of a functional feed for immunostimulation (peptidoglycan extract from bacterial cell wall with nucleotide formulation) on L. salmonis infection levels on Atlantic salmon Salmo salar, and on host and parasite gene expression profiles. Atlantic salmon smolts (~95 g) were fed a control diet, or a low or high dose immunostimulant diet, and then exposed to L. salmonis copepodids in three subsequent exposures. The transcriptome of salmon lice late in the infection attached to either the low dose diet or control diet hosts were compared using a 38K oligonucleotide microarray.
Project description:This study investigates sex-biased gene expression between populations of Atlantic and Pacific salmon lice, Lepeophtheirus salmonis. Two Atlantic L. salmonis populations were previously used for an array study (GSE56024) while a third dataset using Pacific L. salmonis was novel. Using all three populations, a consensus-based, meta-analysis approach was used to identify sex-biased and sex-specific genes.