Project description:Publication title: Pseudonodule formation by wild type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors This SuperSeries is composed of the following subset Series: GSE27991: Expression data of Medicago truncatula Jemalong A17 roots treated with auxin transport inhibitors GSE28171: Expression data of Medicago truncatula Jemalong A17 roots treated with S. meliloti exoA mutant or auxin transport inhibitors GSE28172: Expression data of Medicago truncatula skl1-1 roots treated with S. meliloti wild-type or auxin transport inhibitors GSE28173: Genes differentially expressed in wild-type Medicago truncatula plants during nodulation Refer to individual Series
Project description:For transcript analysis of early nodulation events in Medicago truncatula we compared transcripts from inoculated and uninoculated roots corresponding to defined stages between 1 and 72 h post inoculation (hpi). Keywords: time course
Project description:The Medicago truncatula line 2HA has a 500-fold greater capacity to regenerate plants in culture by somatic embryogenesis than wild-type Jemalong. We have compared transcriptomes of tissue cultures from leaf explants of these two lines. We have used the Affymetrix Medicago Genome Array GeneChip to compare leaf explants of Medicago truncatula Jemalong and the superembryogenic line 2HA after two weeks of tissue culture on 10 µM 1-naphthaleneacetic acid (NAA) and 4 µM 6-benzylaminopurine (BAP) (P4 10:4) Keywords: Genotype comparison
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at variable light and temperature conditions under greenhouse environment (period March-June). Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.
Project description:This experiment constitutes an expression profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing 6144 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiment performed on wild-type and symbiotic mutant material led to the identification of genes either up- or down-regulated at different stages of the nodulation process.
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at variable light and temperature conditions under greenhouse environment (period March-June). Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.
Project description:Transcriptional profiling of seeds of Medicago truncatula during maturation. To identify genes that are regulated during seed maturation in the model legume Medicago truncatula, plants at flowering stage were grown at controlled temperature of 21-19°C, 16h light. Seeds were then collected at different stages of development. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed to follow the differential expression of genes during seed maturation.
Project description:ABI3 is a B3-domain transcription factor that acts as a master regulator of seed maturation. To identify genes that are regulated by this transcription factor in the model legume Medicago truncatula, Medicago hairy roots were generated using Agrobacterium rhizogenes transformed with the genomic sequence of the ABI3 gene of Medicago. Using the Medicago NimbleGen chip, a transciptomic analysis was performed to identify differentially expressed genes compared to the GUS expressed control.
Project description:Plant pathogenic bacteria disseminate and survive through transmission to and by seeds of hosts and non-hosts plants. To investigate the interaction between xanthomonads and developing seeds of Medicago truncatula, plants at the flower bud stage were spray inoculated until runoff with xanthomonads suspensions. Using the Medicago NimbleGen chip, a transcriptomic analysis was performed on seeds to characterize the molecular dialogue between Xanthomonas campestris pv. campestris in an incompatible situation with M. truncatula seeds and Xanthomonas alfalfae pv. alfalfae in a compatible situation at two developmental time points (16 and 32 days atfter pollination (DAP).