Project description:The goal of this project is to compare the primary metabolite profile in different tissue types of the model plant Arabidopsis thaliana. Specifically, plants were grown hydroponically under the long-day (16hr light/day) condition at 21C. Tissue samples, including leaves, inflorescences, and roots were harvest 4 1/2 weeks post sowing. Untargeted primary metabolites profiling was carried out using GCTOF.
Project description:Long intergenic noncoding RNAs (lincRNA) transcribed from intergenic regions of eukaryotic genomes play important roles in key biological processes; yet, plant lincRNAs remain poorly characterized. Here we profiled lincRNA expression in inflorescences, leaves and roots using ATH lincRNA v1 array. we found 92% lincRNAs could be detected in at least 2 ATH lincRNA v1 arrays and majority of the lincRNAs were expressed at levels higher than those of pri-miRNAs but lower than those of mRNAs.Using a cut-off of 2-fold change, we identified 149 lincRNAs preferentially expressed in inflorescences, 232 in leaves and 164 in roots.
Project description:Long intergenic noncoding RNAs (lincRNA) transcribed from intergenic regions of eukaryotic genomes play important roles in key biological processes; yet, plant lincRNAs remain poorly characterized. Here we profiled lincRNA expression in inflorescences, leaves and roots using ATH lincRNA v1 array. we found 92% lincRNAs could be detected in at least 2 ATH lincRNA v1 arrays and majority of the lincRNAs were expressed at levels higher than those of pri-miRNAs but lower than those of mRNAs.Using a cut-off of 2-fold change, we identified 149 lincRNAs preferentially expressed in inflorescences, 232 in leaves and 164 in roots. Nine arrays were hybridized with RNAs from inflorescences, leaves and roots with 3 biological replicates.
Project description:We systematically identified long noncoding natural antisense transcripts (lncNATs), defined as lncRNAs transcribed from the opposite DNA strand of coding or noncoding genes. We identified in total 37,238 sense-antisense transcript pairs and found 70% mRNAs are associated with antisense transcripts in Arabidopsis. To detect the expression levels of these NAT pairs, we designed an Agilent custom array, ATH NAT array, and analyzed RNA samples from Arabidopsis inflorescences, leaves and roots, with 3 biological replicates each. Expression levels of cis-NAT pairs were investigated in WT inflorescences, leaves and roots with 3 biological replicates.
Project description:We systematically identified long noncoding natural antisense transcripts (lncNATs), defined as lncRNAs transcribed from the opposite DNA strand of coding or noncoding genes. We identified in total 37,238 sense-antisense transcript pairs and found 70% mRNAs are associated with antisense transcripts in Arabidopsis. To detect the expression levels of these NAT pairs, we designed an Agilent custom array, ATH NAT array, and analyzed RNA samples from Arabidopsis inflorescences, leaves and roots, with 3 biological replicates each.
Project description:We profiled Arabidopsis transcriptom using RNA-seq. Each RNA library yielded 223-250 million 101-bp single-end reads (235M on average). Using Tophat and Cufflinks, 30,199~30,650 assembled transcripts were identified in each of 4 samples. Of them, 1340 ones were derived from intergenic regions including 278 long intergenic ncRNAs (LincRNAs). Comparing with the 6,480 lincRNAs we identified by analysis of 200 tiling array data sets, 2,708 lincRNAs were also detected by RNA-seq. Transcriptom profiling in roots, leaves, flowers and siliques.
Project description:We sequenced the total RNA from a tissues mixed sample (inflorescences, rosette leaves, cauline leaves and stems) of Arabidopsis thaliana. After total RNA extraction, the same amount of tissue RNA were mixed. Ribosomal RNAs were deleted from the mixed tissue total RNAs using RiboMinus™ Plant Kit repeated three times. We also sequenced 9 poly(A)- RNAs from seedlings treated with different stress conditions at different times. The poly(A)- RNAs were collected by removing poly(A)+ RNAs four times . Then rRNAs were removed from poly(A)- RNAs three times.
Project description:Deep sequencing of the 5' ends of uncapped, polyA-enriched mRNA from two biological replicate samples from Arabidopsis thaliana inflorescences, as well as two biological replicates of Arabidopsis lyrata inflorescences. These data were used to experimentally identify sliced microRNA targets from the two species.