Project description:This SuperSeries is composed of the following subset Series: GSE32353: Expression data from E2f7/E2f8 and E2f1/E2f2/E2f3 null and wild type liver along with E2f7/E2f8 null and wild type trophoblast giant cells (nCounter) GSE32354: Expression data from E2f7/E2f8 and E2f1/E2f2/E2f3 null liver (Affymetrix) Refer to individual Series
Project description:To understand the underlying cause and mechanisms of embryonic lethality observed in combined loss of E2f7 and E2f8, we compared global gene expression profiles of wild type, germline deleted and sox2-Cre/Cyp19-Cre deleted embryos and placentas. RNA was extracted from E10.5 embryos and placentas. Gene deletion in samples confirmed by PCR genotyping of DNA isolated from each sample.
Project description:To understand the underlying cause and mechanisms of embryonic lethality observed in combined loss of E2f7 and E2f8, we compared global gene expression profiles of wild type, germline deleted and sox2-Cre/Cyp19-Cre deleted embryos and placentas.
Project description:Expression data from E2f7/E2f8 and E2f1/E2f2/E2f3 null and wild type liver along with E2f7/E2f8 null and wild type trophoblast giant cells (nCounter)
Project description:We created mice, which are deficient for Myc specifically in cardiac myocytes by crossing crossed Myc-floxed mice (Mycfl/fl) and MLC-2VCre/+ mice. Serial analysis of earlier stages of gestation revealed that Myc-deficient mice died prematurely at E13.5-14.5. Morphological analyses of E13.5 Myc-null embryos showed normal ventricular size and structure; however, decreased cardiac myocyte proliferation and increased apoptosis was observed. BrdU incorporation rates were also decreased significantly in Myc-null myocardium. Myc-null mice displayed a 3.67-fold increase in apoptotic cardiomyocytes by TUNEL assay. We examined global gene expression using oligonucleotide microarrays. Numerous genes involved in mitochondrial death pathways were dysregulated including Bnip3L and Birc2. Keywords: wildtype vs Myc-null
2007-06-30 | GSE7162 | GEO
Project description:E2f7/E2f8 and E2f1/E2f2/E2f3 null and wild type liver along with E2f7/E2f8 null and wild type trophoblast giant cells
Project description:HIF1 is essential for regulation of the transcriptional response to hypoxia. Recently we showed that the transcriptional repressors E2F7 and E2F8 interact and transcriptionally cooperate with HIF1. Here we further explored this cooperation by performing genome-wide analysis, screening for novel HIF1-E2F7 targets. We show that specifically E2F7 is induced in hypoxia by HIF1. Furthermore, chip-sequencing for E2F7 and HIF1 revealed a large number of common targets of which a subset was also regulated by the complex as examined by microarray analysis. Our data show that the HIF1-E2F7 complex can function both as a repressor or activator. Notably, we identify neuropilin 1 (NRP1) as a novel HIF1-E2F7 target, which is repressed by HIF1-E2F7 in vitro and during zebrafish development, depending on E2F-binding sites present in the NRP1 promoter. In addition we show that regulation of NRP1 by the HIF1-E2F7 complex is required for normal axon guidance of spinal motorneurons in vivo. ChIP-seq analysis of HIF1a and E2F7 binding
Project description:We created mice, which are deficient for Myc specifically in cardiac myocytes by crossing crossed Myc-floxed mice (Mycfl/fl) and MLC-2VCre/+ mice. Serial analysis of earlier stages of gestation revealed that Myc-deficient mice died prematurely at E13.5-14.5. Morphological analyses of E13.5 Myc-null embryos showed normal ventricular size and structure; however, decreased cardiac myocyte proliferation and increased apoptosis was observed. BrdU incorporation rates were also decreased significantly in Myc-null myocardium. Myc-null mice displayed a 3.67-fold increase in apoptotic cardiomyocytes by TUNEL assay. We examined global gene expression using oligonucleotide microarrays. Numerous genes involved in mitochondrial death pathways were dysregulated including Bnip3L and Birc2. Hearts were taken from wide type and Myc-null Mouse embryos at E13.5 under the dissecting scope. Cardiac myocyte RNA was isolated using TRIZOL®Reagent Total RNA (100 ng) was hybridized to the Sentrix® MouseRef-8 Expression BeadChip that contains probes for ~24,000 transcripts. GeneChips were scanned using the Hewlett-Packard GeneArray Scanner G2500A. The data were analyzed with Illumina Inc. BeadStudio version 1.5.0.34 and normalized by rank invariant method.
Project description:Cell proliferation is tightly controlled by inhibitors that block cell cycle progression until growth signals relieve this inhibition, allowing cells to divide. In several tissues including the liver, cell proliferation is inhibited at mitosis by the transcriptional repressors E2F7 and E2F8, leading to formation of polyploid cells. Whether growth factors promote mitosis and cell cycle progression by relieving the E2F7/E2F8-mediated inhibition is unknown. We report here on a new mechanism of cell division control in the postnatal liver, in which Wnt/βcatenin signaling maintains active hepatocyte cell division through Tbx3, a Wnt target gene. Tbx3 directly represses transcription of E2F7 and E2F8, thereby promoting mitosis. This cascade of sequential transcriptional repressors, initiated by Wnt signals, provides a new paradigm for exploring how commonly active developmental signals impact cell cycle completion.