Project description:This SuperSeries is composed of the following subset Series: GSE32353: Expression data from E2f7/E2f8 and E2f1/E2f2/E2f3 null and wild type liver along with E2f7/E2f8 null and wild type trophoblast giant cells (nCounter) GSE32354: Expression data from E2f7/E2f8 and E2f1/E2f2/E2f3 null liver (Affymetrix) Refer to individual Series
Project description:Expression data from E2f7/E2f8 and E2f1/E2f2/E2f3 null and wild type liver along with E2f7/E2f8 null and wild type trophoblast giant cells (nCounter)
| PRJNA154899 | ENA
Project description:E2f7/E2f8 and E2f1/E2f2/E2f3 null and wild type liver along with E2f7/E2f8 null and wild type trophoblast giant cells
Project description:Advances in genomic signatures have begun to dissect breast cancer heterogeneity, and application of these signatures will allow the prediction of which pathways are important in tumor development. Here we used genomic signatures to predict involvement of specific E2F transcription factors in Myc-induced tumors. We genetically tested this prediction by interbreeding Myc transgenics with mice lacking various activator E2F alleles. Tumor latency decreased in the E2F1 mutant background and significantly increased in both the E2F2 and E2F3 mutants. Investigating the mechanism behind these changes revealed a reduction in apoptosis in the E2F1 knockout strain. E2F2 and E2F3 mutant backgrounds alleviated Myc effects on the mammary gland, reducing the susceptible tumor target population. Gene expression data from tumors revealed that the E2F2 knockout background resulted in fewer tumors with EMT, corresponding with a reduction in probability of Ras activation. In human breast cancer we found that a low probability of E2F2 pathway activation was associated with increased relapse-free survival time. Together these data illustrate the predictive utility of genomic signatures in deciphering the heterogeneity within breast cancer and illustrate the unique genetic requirements for individual E2Fs in mediating tumorigenesis in both mouse models and human breast cancer. MMTV-Myc tumors were generated in an E2F wild-type, E2F1 null, E2F2 null and E2F3 heterozygous background. When the primary tumor reached the endpoint, the tumors were flash frozen. 20 tumors from each genotype were selected for microarray analysis.
Project description:The E2F family consists of transcriptional repressors and activators that control cell proliferation. In the classic paradigm of cell cycle regulation, the three activators, E2F1, E2F2 and E2F3, are invariably depicted as the final components of a CDK/Rb signaling cascade that executes the transcriptional program necessary to commit cells to enter S phase. Unexpectedly, we find through analysis of Affymetrix expression array data that mature lens epithelial cells deficient for E2F1-3 fail to repress cell cycle-regulated genes (and other targets of E2F) and that this corresponds with subsequent apoptosis and cellular collapse in the lens. Murine lenses were collected at two stages of development for RNA extraction and hybridization on Affymetrix microarrays. Our aim was to determine key events that lead to cellular collapse of lenses triply deficient for E2F1, E2F2, and E2F3 in neonates.
Project description:Rb and E2F are thought to play antagonistic roles in celll proliferation. However, this model is based mostly from in vitro cell culture systems. We used small intestines to test this model in vivo. We found that deletion of E2f1-3 in the small intestine of mice suppressed the ectopic expression of E2F targets and cell proliferation caused by Rb-deficiency. Surprisingly, E2f1-3 deletion failed to arrest the proliferation of intestinal cells containing an intact Rb gene, and instead led to E2F target derepression and apoptosis. Experiment Overall Design: Total RNA of crypts and villi from wild-type, Rb-/-, E2f1-/-, E2f2-/-, E2f3-/-, E2f1-/-, E2f2-/-, and E2f3-/- small intestines. Small intestines were harvested 7 days after mice were injected intraperitoneally with beta-napthoflavone.
Project description:The E2F family consists of transcriptional repressors and activators that control cell proliferation. In the classic paradigm of cell cycle regulation, the three activators, E2F1, E2F2 and E2F3, are invariably depicted as the final components of a CDK/Rb signaling cascade that executes the transcriptional program necessary to commit cells to enter S phase. Unexpectedly, we find through analysis of Affymetrix expression array data that mature lens epithelial cells deficient for E2F1-3 fail to repress cell cycle-regulated genes (and other targets of E2F) and that this corresponds with subsequent apoptosis and cellular collapse in the lens.
Project description:Advances in genomic signatures have begun to dissect breast cancer heterogeneity, and application of these signatures will allow the prediction of which pathways are important in tumor development. Here we used genomic signatures to predict involvement of specific E2F transcription factors in Myc-induced tumors. We genetically tested this prediction by interbreeding Myc transgenics with mice lacking various activator E2F alleles. Tumor latency decreased in the E2F1 mutant background and significantly increased in both the E2F2 and E2F3 mutants. Investigating the mechanism behind these changes revealed a reduction in apoptosis in the E2F1 knockout strain. E2F2 and E2F3 mutant backgrounds alleviated Myc effects on the mammary gland, reducing the susceptible tumor target population. Gene expression data from tumors revealed that the E2F2 knockout background resulted in fewer tumors with EMT, corresponding with a reduction in probability of Ras activation. In human breast cancer we found that a low probability of E2F2 pathway activation was associated with increased relapse-free survival time. Together these data illustrate the predictive utility of genomic signatures in deciphering the heterogeneity within breast cancer and illustrate the unique genetic requirements for individual E2Fs in mediating tumorigenesis in both mouse models and human breast cancer.