Project description:Cervical cancer is characterized by a well-defined pre-malignant phase, cervical intraepithelial neoplasia (CIN). Identification of high grade CIN lesions by population-based screening programs and their subsequent treatment has led to a significant reduction of the incidence and mortality of cervical cancer. Cytology-based testing of cervical smears is the most widely used cervical cancer screening method, but is not ideal, as the sensitivity for detection of CIN2 and higher (CIN2+) is only ~55%. Therefore, more sensitive and specific biomarkers for cervical cancer and its precancerous stages are needed.
Project description:Cervical cancer is one of the most common cancers in women worldwide. The role of HPV in cervical cancer is well studied, however, the underlying mechanism promoting cervical tumorigenesis is still not fully understood. Recently, emodin was shown to induce cell cycle arrest, induction of differentiation, downregulation of TGF β signaling pathway and apoptosis in cervical cancer cell lines. Further, recent studies have shown the role of miRNAs in mediating abnormal regulatory mechanisms leading to the pathogenesis of cervical cancer and large scale miRNA profiling studies have examined the use of miRNAs as cervical cancer diagnostic markers. However, to date, there is no study being performed to analyze the changes in miRNAs following emodin treatment to determine whether emodin mediates its effects by regulating the expression of miRNAs. Therefore, the aim of the current study is to perform miRNA profiling in cervical cancer cells following emodin treatment and to analyze the roles of differentially expressed miRNAs in regulating the pathogenesis and treatment of cervical cancer.
Project description:To investigate the differences in mRNA profiles specially related to metabolism in cervical cancer, 5 primary cervical cancer tissues and 6 normal cervical tissues were collected. The differential expression of metabolism-associated-mRNA was verified using qRT-PCR.
Project description:Genomic alteration of cervical cancer samples. Analysis by CGH array. Array spotted at AECOM (NY) with human ESTs. Analysis as in Bourdon et al. Cancer Res. 2002 Nov 1;62(21):6218-23 Keywords: parallel sample
Project description:To explore the circRNA expression profiles during the development and progression of cervical cancer, we performed RNA sequencing analysis with ribosomal RNA-depleted in HPV negative normal cervical epithelium, HPV16 positive normal cervical epithelium, HPV16 positive high-grade squamous intraepithelial lesion (HSIL), and HPV16 positive cervical squamous cell carcinoma tissues,6 cases in each group.Totally 66868 circRNAs were identified (Back-spliced junctions reads≥1)
Project description:Cervical cancer is the second most common cancer in women worldwide. In addition to the important role played by HPV, the underlying mechanism promoting cervical tumorigenesis is complex and involves deregulation of key signaling pathways. Recently, role of miRNA mediated abnormal regulatory mechanisms is implicated in the pathogenesis of cervical cancer. Micro RNAs are regulatory, non‐coding RNAs about 21–23 nucleotides in length and effects the expression of a number of genes at the post‐transcriptional level. For the past few decades, role of curcumin in inhibiting the growth of cervical cancer and increasing the chemo and radio- sensistivity has been studied extensively. Interestingly, curcumin was shown to downregulate NF-κB, Wnt/β-catenin, TGF‐β and various other signaling pathways in cervical cancer cells. Although, a number of microarray studies have examined the use of miRNAs as cancer diagnostic markers, the regulation of miRNAs upon treatment with curcumin in cervical cancer cells has not been studied. The current study is aimed to perform miRNA profiling in cervical cancer cells following curcumin treatment and to study the role of miRNAs in regulating the different signaling pathways.