Project description:Our transcriptomic data shows that iron impact on human osteoblastic MG-63 cells by decreasing HHIPL-2 gene expression (2 fold ratio). This impact is corrected in presence of deferoxamine. Additional biological experiments in the manuscript suggest that the iron related modulation of HHIPL-2 gene expression could take place in the decrease of osteoblastic markers in the MG-63 cell line. Such mechanisms could participate to the development of osteoporosis in iron overloaded patients.
Project description:Our transcriptomic data shows that iron impact on human osteoblastic MG-63 cells by decreasing HHIPL-2 gene expression (2 fold ratio). This impact is corrected in presence of deferoxamine. Additional biological experiments in the manuscript suggest that the iron related modulation of HHIPL-2 gene expression could take place in the decrease of osteoblastic markers in the MG-63 cell line. Such mechanisms could participate to the development of osteoporosis in iron overloaded patients. One-condition experiment, iron exposure using ferric ammonium citrate (FAC) at two concentrations (5 and 20M-BM-5M) was compared to basal condition. Additional conditions include: deferoxamine (DFO) (iron chelator) 20M-BM-5M alone or in addition to FAC 20M-BM-5M. For each condition five biological replicates were performed (independent experiments).
Project description:Three osteosarcoma (OS) cell lines (MG-63, Saos-2 and U-2 OS) and 1 osteoblastic cell line (hFOB1.19) were collected for this work. MG-63 was kindly provided by Dr. Agi Grigoriadis from University College London. Saos-2, U-2 OS and hFOB1.19 were purchased from ATCC. All cells used were kept in exponential phase of growth. Total RNA was extracted using the RNeasy Total RNA Isolation kit (QIAGEN). The quality and purity of the products were controlled by Agilent 2100. The final synthesized biotinylated cDNAs were hybridized to Affymetrix GeneChip® U133A 2.0 arrays following the protocol strictly. Arrays were scanned with the Affymetrix scanner 3000. Data analysis was performed by Microarray Suite 5.0 after pre-standard procedure.
Project description:Iron is an essential nutrient yet toxic in excess. Our understanding of mammalian mechanisms of dietary iron absorption exceeds our understanding of mechanisms of iron excretion. Here we demonstrate that biliary excretion of excess iron in mice requires the metal transporter SLC39A14 and that excess Fe is excreted into bile as ferritin and heme. The identification of a molecular determinant of iron excretion and the biochemical form of bile iron could lead to development of novel therapeutics for human diseases of iron excess
Project description:Three osteosarcoma (OS) cell lines (MG-63, Saos-2 and U-2 OS) and 1 osteoblastic cell line (hFOB1.19) were collected for this work. MG-63 was kindly provided by Dr. Agi Grigoriadis from University College London. Saos-2, U-2 OS and hFOB1.19 were purchased from ATCC. All cells used were kept in exponential phase of growth. Total RNA was extracted using the RNeasy Total RNA Isolation kit (QIAGEN). The quality and purity of the products were controlled by Agilent 2100. The final synthesized biotinylated cDNAs were hybridized to Affymetrix GeneChip® U133A 2.0 arrays following the protocol strictly. Arrays were scanned with the Affymetrix scanner 3000. Data analysis was performed by Microarray Suite 5.0 after pre-standard procedure. Link-test on datasets from both SELDI-TOF-MS and microarray high-throughput analysis platforms can accelerate the identification of tumor biomarkers. The results confirmed that CYC-1 with important biomedical function was an effective candidate biomarker for osteosarcoma early diagnosis.
Project description:Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.
Project description:Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.
Project description:Aerobic Escherichia coli growth at restricted iron concentrations (≤ 1.75 ± 0.04 mM) is characterized by lower biomass yield, higher acetate accumulation, and higher activation of the siderophore iron-acquisition systems. Although iron homeostasis in E. coli has been studied intensively, these studies focused only on understanding the regulation of the iron import systems and the iron-requiring enzymes. In this study, the effect of iron availability on the energy metabolism of E. coli was investigated. It was established that aerobic cultures growing at limiting iron conditions showed lower ATP yield per glucose, lower growth rate, and lower TCA cycle activity and respiration, and at the same time increased glucose consumption, acetate and pyruvate accumulation, practically mimicking microaerobic growth. However, at excess iron, independently of oxygen availability, the cultures showed high cellular energetics (5.8 ATP/mol of glucose) by using pathways requiring iron-rich complex proteins found in the TCA cycle and respiration chain. At conditions of iron excess, some iron requiring terminal reductases of the respiratory chain, that were supposed to be anaerobic, were used by the E. coli, when in aerobic conditions, to keep high respiration activity. This high respiration activity allowed E. coli to produce more biomass and more reactive oxygen species that were controlled by the higher activity of the antioxidant defenses (SOD, peroxidase, and catalase) and the iron-sulfur cluster repair systems.
Project description:A Candida glabrata wild type strain (HTL, as described in Schwartzmuller et al., PLoS Pathog. 2014 Jun 19;10(6):e1004211) was submitted to various stress conditions (iron excess, salt excess, cadmium treatment and iron starvation (BPS treatment). The cells were collected 20 and 40 minutes after the beginning of treatments and their transcriptomes were compared to those of mock treated cells.
Project description:RATIONALE: Deferasirox may remove excess iron from the body caused by blood transfusions.
PURPOSE: This clinical trial studies deferasirox in treating iron overload caused by blood transfusions in patients with hematologic malignancies.