Project description:Transcription profiling by high throughput sequencing of the potato (genotype RH89-039-16) ArrayExpress Release Date: 2011-07-11 Person Roles: submitter Person Last Name: Soenderkaer Person First Name: Mads Person Mid Initials: Person Email: mson@bio.aau.dk Person Phone: 4530532492 Person Address: Sohngaardsholmsvej 49, 9000 Aalborg, Denmark Person Affiliation: Aalborg University
Project description:Transcriptome Analysis of the potato (genotype RH89-039-16). To aid annotation and address a series of biological questions, we generated RNA-Seq data from 16 RH libraries representing all major tissue types, developmental stages and responses to abiotic and biotic stresses.
Project description:Potato leaves From Solanum tuberosum var. Kennebec will be wounded and oral secretions from 4th instar CPB will be isolated and added to the plants as described by Kruzmane et al (2002, Physiol. Plantarum 115:577-584). The leaf from the 6th node of the potato plant will be wounded or wounded and treated with oral secretions from CPB. Unwounded leaves from node 1-5 of the wounded and wounded plus oral secretions plants will be harvested as systemic material. The leaves will be harvested after 4 hrs and RNA will be isolated. 4 hrs was chosen because this represents a time when early and late induced genes should both be present. In addition, the leaf from the 6th node will be subjected to feeding by CPB that have been raised on potato leaves and starved for 16 hrs immediately prior to infestation. Insects will be allowed to feed for 1 hr and the leaves will be harvested after 3 additional hrs. An additional set of plants will be used to infest the leaf on the 6th node for 4 hrs. Leaves from the 6th node will be collected from uninfested plants after 4 hrs as a control. Three sets of 6-12 plants will be used for each sample. Keywords: Direct comparison
Project description:Phloem localization of plant viruses is advantageous for acquisition by sap-sucking vectors but hampers host-virus protein interaction studies. In this study, Potato leafroll virus (PLRV)-host protein complexes were isolated from systemically infected potato, a natural host of the virus. Comparing two different co-immunoprecipitation support matrices coupled to mass spectrometry, we identified 44 potato proteins and one viral protein (P1) specifically associated with virus isolated from infected phloem. An additional 142 proteins interact in complex with virus at varying degrees of confidence. Greater than 80% of these proteins were previously found to form high confidence interactions with PLRV isolated from the model host Nicotiana benthamiana. Bioinformatics revealed that these proteins are enriched for functions related to plasmodesmata, organelle membrane transport, translation and mRNA processing. Our results show that model system proteomics experiments are extremely valuable for understanding protein interactions regulating infection in recalcitrant pathogens such as phloem-limited viruses.