Project description:Low temperatures may cause severe growth inhibition and mortality in fish. In order to understand the mechanism of cold tolerance, a transgenic zebrafish Tg (smyd1:m3ck) model was established to study the effect of energy homeostasis during cold stress. The muscle-specific promoter Smyd1 was used to express the carp muscle form III of creatine kinase (M3-CK), which maintained enzymatic activity at a relatively low temperature, in zebrafish skeletal muscle. In situ hybridization showed that M3-CK was expressed strongly in the skeletal muscle. When exposed to 13°C, Tg (smyd1:m3ck) fish maintained their swimming behavior, while the wild-type could not. Energy measurements showed that the concentration of ATP increased in Tg (smyd1:m3ck) versus wild-type fish at 28°C. After 2 h at 13°C, ATP concentrations were 2.16-fold higher in Tg (smyd1:m3ck) than in wild-type (P < 0.05). At 13°C, the ATP concentration in Tg (smyd1:m3ck) fish and wild-type fish was 63.3% and 20.0%, respectively, of that in wild-type fish at 28°C. Microarray analysis revealed differential expression of 1249 transcripts in Tg (smyd1:m3ck) versus wild-type fish under cold stress. Biological processes that were significantly overrepresented in this group included circadian rhythm, energy metabolism, lipid transport, and metabolism. These results are clues to understanding the mechanisms underlying temperature acclimation in fish.
Project description:To gain a better understanding of the factors necessary for successful CNS regeneration, a temporal analysis of the changes in gene expression in the eye caused by optic nerve injury was conducted. Dual color oligonucleotide microarrays were used to compare total RNA harvested from the eyes of sham-operated and optic nerve-injured fish at 3, 24, and 168 hours following surgery. Optic nerve injured fish are compared to sham-operated fish in order to eliminate gene expression due to non-neuronal damage and inflammatory response. Statistical analyses identified 131 genes with a 2.0-fold or greater difference in expression.
Project description:Compared to other fish models, miRNAs are currently most extensively studied and identified in zebrafish. Approximately 415 dre-miRNAs have been identified and several articles have studied some aspect of miRNA function in zebrafish such as their role in basic development and in disease pathways. However, this field of research is in its infancy and the function of several dre-miRNAs, as well as their tissue-specific expression profile, are yet to be defined. In this study, the liver and gut were dissected (wildtype/untreated fish), total and small RNA were extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing (HTS) using standard approaches. We carried out differential expression (DE) analysis and compared liver miRNA expression to gut using established bioinformatics pipelines. Through bioinformatics analysis, known and putative novel miRNAs were identified. Finally, we constructed a “miRNA matrix” that connects both total RNA-Seq and miRNA-Seq.
Project description:Compared to other fish models, miRNAs are currently most extensively studied and identified in zebrafish. Approximately 415 dre-miRNAs have been identified and several articles have studied some aspect of miRNA function in zebrafish such as their role in basic development and in disease pathways. However, this field of research is in its infancy and the function of several dre-miRNAs, as well as their tissue-specific expression profile, are yet to be defined. In this study, the liver and gut were dissected (wildtype/untreated fish), total and small RNA were extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing (HTS) using standard approaches. We carried out differential expression (DE) analysis and compared liver miRNA expression to gut using established bioinformatics pipelines. Through bioinformatics analysis, known and putative novel miRNAs were identified. Finally, we constructed a “miRNA matrix” that connects both total RNA-Seq and miRNA-Seq.