Project description:Temperature is a key environmental factor for facultative pathogens during the host adaptation response. To assess the functional role of temperature in Yersinia pestis, a microarray study was conducted comparing the Δpgm (pigmentation-negative) R88 strain grown at 37°C or 30°C.
Project description:Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37°C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis than in vitro-grown bacteria, which was largely attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results indicate that cycling through the flea vector preadapts Y. pestis to face the mammalian innate immune response that it encounters immediately after transmission.
Project description:Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37°C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis than in vitro-grown bacteria, which was largely attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results indicate that cycling through the flea vector preadapts Y. pestis to face the mammalian innate immune response that it encounters immediately after transmission. Midlog phase vs. stationary phase vs. flowcell biofilm vs. flea biofilm.
Project description:A microarray was developed to screen rodent samples for pathogens of zoonotic importance In the work described here, a homologue to Yersinia pestis was found in rodent samples after screening with the microarray
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (∆pgm) to a double AHL mutant strain (∆pgm ΔypeIR ΔyspIR) at 37°C.
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (∆pgm) to a double AHL mutant strain (∆pgm ΔypeIR) at 30°C.
Project description:A microarray was developed to screen rodent samples for pathogens of zoonotic importance In the work described here, a homologue to Yersinia pestis was found in rodent samples after screening with the microarray A number of rodent samples from the UK and Canada were identified as carrying a homologue to a Yersinia pestis gene
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect Ysp AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (∆pgm) to a single AHL mutant strain (∆pgm ΔyspI) at 30°C.
Project description:Quorum sensing is a cell to cell communication process that involves chemical signaling. Yersinia pestis, the agent of plague, has two functional AHL quorum sensing systems Ysp and Ype. For several reasons, it was not clear what effect AHL pathways have on virulence gene expression and survival in the two different hosts, flea and human. To investigate to what effect Ysp AHL quorum sensing has on gene expression, we conducted microarray studies comparing Yersinia pestis CO92 (∆pgm) to a single AHL mutant strain (∆pgm ΔyspI) at 37°C.