Project description:Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-H+ symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9 % higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5’ coding sequences of SUC2, resulting in relocation of invertase to the cytosol. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 95 generations of anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11 % higher ethanol yield on sucrose in chemostat and batch cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. Deletion of AGT1, which had been duplicated during laboratory evolution, restored the growth characteristics of the unevolved iSUC2 strain. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes. The goal of the present study was to investigate whether a relocation of sucrose hydrolysis to the cytosol can be used to improve ethanol yields on sucrose and which additional steps may be required to improve sucrose utilization by strains that only express intracellular invertase. To this end, the SUC2 gene was modified to cause an exclusive intracellular localization. Growth and product formation by the engineered strain were compared with that of the parental strain in anaerobic sucrose-limited chemostat cultures. Subsequently, evolutionary engineering was used to improve sucrose uptake kinetics and an evolved strain was characterized for growth and product formation in chemostat cultures. Transcriptome analysis and gene deletion studies were used to identify genetic changes in the evolved strain that contribute to its improved sucrose-uptake kinetics.
Project description:Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-H+ symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9 % higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5’ coding sequences of SUC2, resulting in relocation of invertase to the cytosol. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 95 generations of anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11 % higher ethanol yield on sucrose in chemostat and batch cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. Deletion of AGT1, which had been duplicated during laboratory evolution, restored the growth characteristics of the unevolved iSUC2 strain. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.
Project description:Thermotolerance development of robust Saccharomyces cerevisiae is necessary to enhance enzyme activity of cellulase, lower cooling costs, and reduce cell harm from the bad-distributed heat transfer in large-scale fermentation. The process-based studies of adaptive evolution have been well documented, but it remains unknown for the underlying molecular mechanism of the improved thermotolerance and the facilitated ethanol fermentability derived from adaptive evolution. Here, a robust thermotolerant S. cerevisiae Z100 was obtained with significantly improved ethanol fermentability under the stress of high temperature (50 oC) after 91 days’ adaptive evolution. RNA sequencing showed that adaptive evolution and its derived thermotolerance contributed to the unique gene transcriptional landscapes of the evolved strain. An interesting phenomenon was that the gene transcriptional signals of carbon metabolism were strengthened not at 50 oC but at 30 oC in S. cerevisiae Z100, and thus suggested that the improved thermotolerance led to the enhanced ethanol fermentability at 30 oC. The deeply repressed gene transcriptional expression indicated ribosome would be another key thermotolerant mechanism for the evolved strain. This study would provide a robust thermotolerant S. cerevisiae for bioethanol production and an important clue for future synthetic biology to thermotolerance engineering of fermentation strains.
Project description:Evolutionary engineering strategy was used for selection of ethanol-tolerant Saccharomyces cerevisiae clones under gradually increasing ethanol stress levels. Clones B2 and B8 were selected based on their higher ethanol-tolerance and higher ethanol production levels. Whole genome microarray analysis was used for identifying the gene expression levels of these two evolved clones compared to the reference strain.
Project description:Industrial bioethanol production may involve a low pH environment,improving the tolerance of S. cerevisiae to a low pH environment caused by inorganic acids may be of industrial importance to control bacterial contamination, increase ethanol yield and reduce production cost. Through analysis the transcriptomic data of Saccharomyces cerevisiae with different ploidy under low pH stress, we hope to find the tolerance mechanism of Saccharomyces cerevisiae to low pH.
Project description:Carotenoids are a large family of health-beneficial compounds that have been widely used in the food and nutraceutical industries. There have been extensive studies to engineer Saccharomyces cerevisiae for the production of carotenoids, which already gained high level. However, it was difficult to discover new targets that were relevant to the accumulation of carotenoids. Herein, a new, ethanol-induced adaptive laboratory evolution was applied to boost carotenoid accumulation in a carotenoid producer BL03-D-4, subsequently, an evolved strain M3 was obtained with a 5.1-fold increase in carotenoid yield. Through whole-genome resequencing and reverse engineering, loss-of-function mutation of phosphofructokinase 1 (PFK1) was revealed as the major cause of increased carotenoid yield. Transcriptome analysis was conducted to reveal the potential mechanisms for improved yield, and strengthening of gluconeogenesis and downregulation of cell wall-related genes were observed in M3. This study provided a classic case where the appropriate selective pressure could be employed to improve carotenoid yield using adaptive evolution and elucidated the causal mutation of evolved strain.
Project description:High concenHigh concentration acetic acid in the fermentation medium represses cell growth, metabolism and fermentation efficiency of Saccharomyces cerevisiae, which is widely used for cellulosic ethanol production. Our previous study proved that supplementation of zinc sulfate in the fermentation medium improved cell growth and ethanol fermentation performance of S. cerevisiae under acetic acid stress condition. However, the molecular mechanisms is still unclear. To explore the underlying mechanism of zinc sulfate protection against acetic acid stress, transcriptomic and proteomic analysis were performed. The changed genes and proteins are related to carbon metabolism, amino acid biosynthesis, energy metabolism, vitamin biosynthesis and stress responses. In a total, 28 genes showed same expression in transcriptomic and proteomic data, indicating that zinc sulfate affects gene expression at posttranscriptional and posttranslational levels.tration acetic acid in the fermentation medium represses cell growth, metabolism and fermentation efficiency of Saccharomyces cerevisiae, which is widely used for cellulosic ethanol production. Our previous study proved that supplementation of zinc sulfate in the fermentation medium improved cell growth and ethanol fermentation performance of S. cerevisiae under acetic acid stress condition. However, the molecular mechanisms is still unclear. To explore the underlying mechanism of zinc sulfate protection against acetic acid stress, transcriptomic and proteomic analysis were performed. The changed genes and proteins are related to carbon metabolism, amino acid biosynthesis, energy metabolism, vitamin biosynthesis and stress responses. In a total, 28 genes showed same expression in transcriptomic and proteomic data, indicating that zinc sulfate affects gene expression at posttranscriptional and posttranslational levels.
Project description:Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe177Ser) and, similarly, Tyr195His, and Lys218Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods. Keywords: stress response
Project description:The aim of present study is to understand the impact of xylose utilization on the Saccharomyces cerevisiae physiology after initial genetic engineering and in a strain with an improved xylose utilization phenotype.
Project description:The environmental stresses and inhibitors encounted by Saccharomyces cerevisiae strains are main limiting factors in bioethanol fermentation. Investigation of the molecular mechanisms underlying the stresses-related phenotypes diversities within and between S. cerevisiae populations could guide the construction of yeast strains with improved stresses tolerance and fermentation performances. Here, we explored the genetic characteristics of the bioethanol S. cerevisiae strains, and elucidated the genetic variations correlated with its advantaged traits (higher ethanol yield under sever conditions and better tolerance to multiple stresses compared to an S288c derived laboratory strain BYZ1). Firstly, pulse-field gel electrophoresis combined with array-comparative genomic hybridization was used to compare the genome structure of industrial strains and the laboratory strain BYZ1.