Project description:Drugs directly targeting Hepatitis C (HCV) are often rendered useless by the high mutation rate of the virus. Thus, we deduce that targeting of host factor that affect HCV replication may provide enhanced therapy fort HCV infection. Hepatocyte cell line Huh7 is known to be non-permissive for Hepatits C (HCV) replication. Through a method developed by the Rice laboratory (Blight, K.J., et al., J Virol, 2002), selection of a small subset of permissive hepatocytes is possible. The Rice laboratory generated the first permissive cell line, Huh7.5, using this method. We generated another permissive cell line, HRP1, using the same method. With microarray, we compared the expression of host mRNAs in non-permissive Huh7 to both Huh7.5 and HRP1 searching for host factors lost in the cell lines permisive for HCV replication. Non-permissive cell line Huh7 and permissive cell lines Huh7.5 and HRP1 were harvested for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Drugs directly targeting Hepatitis C (HCV) are often rendered useless by the high mutation rate of the virus. Thus, we deduce that targeting of host factor that affect HCV replication may provide enhanced therapy fort HCV infection. Hepatocyte cell line Huh7 is known to be non-permissive for Hepatits C (HCV) replication. Through a method developed by the Rice laboratory (Blight, K.J., et al., J Virol, 2002), selection of a small subset of permissive hepatocytes is possible. The Rice laboratory generated the first permissive cell line, Huh7.5, using this method. We generated another permissive cell line, HRP1, using the same method. With microarray, we compared the expression of host mRNAs in non-permissive Huh7 to both Huh7.5 and HRP1 searching for host factors lost in the cell lines permisive for HCV replication.
Project description:A powerful approach to study innate antiviral response is to compare the difference between wild type Huh7 cells, which do not support robust replication of hepatitis C virus (HCV)2, versus certain subclones of Huh7 cells that are permissive for HCV replication. We generated two permissive cell lines and two independent non-permissive subclone from Huh7 cells. We compared the global methylation pattern of these different cells and find that Huh7 cells exist as a heterogeneous population of cells with distinct patterns of gene methylation.
Project description:A powerful approach to study innate antiviral response is to compare the difference between wild type Huh7 cells, which do not support robust replication of hepatitis C virus (HCV)2, versus certain subclones of Huh7 cells that are permissive for HCV replication. We generated two permissive cell lines and two independent non-permissive subclone from Huh7 cells. We compared the global methylation pattern of these different cells and find that Huh7 cells exist as a heterogeneous population of cells with distinct patterns of gene methylation. Comparison of Huh7, HRP1, HRP4, Huh7-pNeo1 and Huh7-pNeo2 cells.
Project description:MX1 is a well-characterized interferon-induced antiviral gene. MX1 is activated by viral infection due to interferon production in cells. We treated non-permissive Huh7 cells and permissive HRP4 cells with interferon. We compared the expression of genes induced by interferon to determine host factors affecting HCV replication.
Project description:MX1 is a well-characterized interferon-induced antiviral gene. MX1 is activated by viral infection due to interferon production in cells. We treated non-permissive Huh7 cells and permissive HRP4 cells with interferon. We compared the expression of genes induced by interferon to determine host factors affecting HCV replication. Huh7 cells and HRP4 cells were treated with 40U/ml interferon-α for 6h. RNA was extracted and hybridized on Affymetrix microarrays
Project description:Hepatitis C Virus (HCV) has a extremely narrow host cell tropism and robustly infects only very few cell lines, most importantly the human hepatoma cell line Huh7. This cell line was isolated from a 57-year old Japanese male with fulminant hepatitis. Different subclones and passages of the Huh7 cell line show up to 1000-fold differences in HCV replication efficiency (permissiveness). In this experiment, we sought to identify factors responsible for these differences by correlating gene expression from eight different uninfected Huh7 variants with their respective HCV permissiveness. HCV replication efficiency was determined using electroporation of a subgenomic luciferase reporter replicon (genotype 1b, "con1/ET") and measuring luciferase activity at 48h post transfection normalized to the input value at 4h p.t.. "Relative permissiveness" of cell lines corresponds to their replication efficiency, normalized to the efficiency in the lowest permissive cells (Huh7 p13 and p28).
Project description:Tp80 is a novel antiviral compound. Antiviral mechanism of Tp80 is the inhibition of the viral genome replication through the recoverly of GPx2 expression downregulated by HCV infection. We used microarrays to evaluated the effect of Tp80 on the transcriptome of HCV replicon cells, compared with Non-infected host cells or non-treated HCV replicon cells.
Project description:Transcription profiling by array of human hepatoma Huh7.5.1-derived cell clones; Huh7.5.1-8 cells highly permissive to HCV and S7-A cells resistant to HCV.