Project description:The angio-suppressive effect of 20(R)-ginsenoside Rg3 (Rg3-R) has been previously demonstrated, and microRNAs (miRNAs) are a vital group of small non-coding RNAs that function as post-transcriptional modulator of gene expression. Thus, using human umbilical vein endothelial cells (HUVEC) as model, we compared the microRNA (miRNA) expression profile of vascular endothelial growth factor (VEGF)-induced cells with the profile of the cell co-treated with VEGF and Rg3-R. Among the screened 553 human miRNAs, 6 up-regulated (miR-520h, miR-487b, miR-197, miR-524*, miR-342 and miR-219) and 3 down-regulated (miR-23a, miR-489 and miR-377) miRNAs were detected in Rg3-R treated vascular endothelial growth factor (VEGF)-induced HUVECs compared to VEGF alone. Real time RT-PCR was subsequently performed to verify the miRNA microarray result. Two condition experiment: VEGF-induced HUVEC and VEGF-induced HUVEC treated with Rg3-R. Three independent microarray experiments, with triplicate per microarray.
Project description:Ginsenoside 20(S)-Rg3, an active saponin monomer extracted from red ginseng, inhibits the malignancy of ovarian cancer cells. RNA-Seq analysis was used for deep sequencing of lncRNA to detected molecular mechanisms of 20(S)-Rg3.We identified 85 differentially expressed lncRNA influenced by 20(S)-Rg3, among which 67 lncRNAs were significantly decreased (fold change<0.5, p<0.05) including 12 ncRNAs and 55 pseudo genes, and 18 lncRNAs were significantly increased (fold change>1.5, p<0.05) including 3 ncRNAs, 14 pseudo genes and 1 unknown gene. This study provide a valuable resource for the discovery of lncRNAs related to anti-tumor mechanism of 20(S)-Rg3.
Project description:The angio-suppressive effect of 20(R)-ginsenoside Rg3 (Rg3-R) has been previously demonstrated, and microRNAs (miRNAs) are a vital group of small non-coding RNAs that function as post-transcriptional modulator of gene expression. Thus, using human umbilical vein endothelial cells (HUVEC) as model, we compared the microRNA (miRNA) expression profile of vascular endothelial growth factor (VEGF)-induced cells with the profile of the cell co-treated with VEGF and Rg3-R. Among the screened 553 human miRNAs, 6 up-regulated (miR-520h, miR-487b, miR-197, miR-524*, miR-342 and miR-219) and 3 down-regulated (miR-23a, miR-489 and miR-377) miRNAs were detected in Rg3-R treated vascular endothelial growth factor (VEGF)-induced HUVECs compared to VEGF alone. Real time RT-PCR was subsequently performed to verify the miRNA microarray result.
Project description:Genome wide DNA methylation profiling of estrogene receptor postive breast cancer cell line MCF-7, treating Ginsoenoside Rg3. The Illumina Infinium Human Methylation EPIC v1.0 B2 Bead chip was used to obtain DNA methylation profiles across approximately 850,000 CpGs. This profiling indicates that Ginsenoside Rg3 induces epigenetic and cellular changes.
Project description:RNA sequencing experiments revealed that the killing effect of the GO-Rg3-DOX nanoplatform proceeds primarily by downregulation of anti-apoptotic and angiogenesis related genes
Project description:The breast cancer incidence has been increasing in China, with the earlier age of onset compared with Western countries. Traditional Chinese medicine has been provided as one of the major source of anti-cancer drugs. Ginseng is one of the most common traditional medicines in China. Ginsenosides, the saponins in the plant Panax (ginseng) are the major active components responsible for their chemopreventive effects from cancer. However, the mechanisms by which ginsenosides exert their anti-cancer effect remain elusive. By combining TMT-based quantitation with TiO2-based phosphopeptide enrichment, we performed a quantitative analysis of the changes of the phosphoproteomes in ginsenoside Rg3-treated breast cancer MDA-MB-231 cells. We were able to quantitate 5,140 phosphorylation sites on 2,041 phosphoproteins. Our data show that the phosphorylation status of 13 sites was changed in MDA-MB-231 cells upon Rg3 treatment. The perturbed phosphoproteins are CPSF7, EEF2, HIRIP3, MAGED2, MPRIP, MYCBP2, PAWR, PPP1R12A, RANBP2, SEPT9, TMPO, and UFL1. These proteins are involved in various biological processes, including protein synthesis, cell division, and inhibition of NF-κB signaling. Our study revealed that Rg3 exerts its anti-cancer effects through a combination of different signaling pathways.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.