Project description:There are a total of four samples each for this analysis. Each sample consists of the cells grown on three 10 cm culture plates. Each plate should have 2x106 cells for a total of 6x106 cells per sample when all three plates are combined. The first sample is undifferentiated human embryonic stem cells, the second sample is human glutamatergic neurons derived from those human embryonic stem cells, the third sample is undifferentiated human induced pluripotent stem cells and the fourth sample is human glutamatergic neurons derived from those human induced pluripotent stem cells.
Project description:Human pluripotent stem cells can be derived from somatic cells by forced expression of defined factors, and more recently by nuclear-transfer into human oocytes, revitalizing a debate on whether one reprogramming approach might be advantageous over the other. Here we compared the genetic and epigenetic stability of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal and adult origin. Both cell types shared similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs have comparable numbers of de novo coding mutations but significantly higher than parthenogenetic ESCs. Similar to iPSCs NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes, similarly to iPSCs. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of the underlying technique. RNA sequencing analysis was performed on a total of 12 human cell lines, including: an isogenic set of 3 nuclear-transfer embryonic stem cell (NT-ESC) lines, 2 RNA-reprogrammed induced pluripotent stem cell (iPSC) lines and their parental neonatal fibroblast cell line; an isogenic set of 1 NT-ESC line, 3 iPSC lines and their parental adult fibroblast cell line (derived from a type 1 diabetic subject); as well as 1 control embryonic stem cell (ESC) line.
Project description:Human pluripotent stem cells can be derived from somatic cells by forced expression of defined factors, and more recently by nuclear-transfer into human oocytes, revitalizing a debate on whether one reprogramming approach might be advantageous over the other. Here we compared the genetic and epigenetic stability of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal and adult origin. Both cell types shared similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs have comparable numbers of de novo coding mutations but significantly higher than parthenogenetic ESCs. Similar to iPSCs NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes, similarly to iPSCs. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of the underlying technique. Genome-wide DNA methylation profiling by Illumina Infinium HumanMethylation 450K Beadchip was performed on a total of 21 human cell lines, including: an isogenic set of 3 nuclear-transfer embryonic stem cell (NT-ESC) lines, 2 RNA-reprogrammed induced pluripotent stem cell (iPSC) lines and their parental neonatal fibroblast cell line; an isogenic set of 1 NT-ESC line, 6 iPSC lines and their parental adult fibroblast cell line (derived from a type 1 diabetic subject); as well as 7 control embryonic stem cell (ESC) lines.
Project description:Here we performed genome-wide RNA-seq and Reduced Representation Bisulfite Sequencing (RRBS-seq) in isogenic human induced pluripotent stem cells (iPSCs) and somatic cell nuclear transfer-derived embryonic stem cells (nt-ESCs), genetically matched in vitro fertilization-derived ESCs (IVF-ESCs), and their respective differentiated cells (cardiomyocytes and endothelial cells). We generated the transcriptome and DNA methylome map in human pluripotent stem cells and their differentiated cells with single-nucleotide resolution. We compared the genetic (genetic makeup) and epigenetic (reprogramming approach) influence on the gene expression and DNA methylation profiles and found that genetic composition is the major contributor of the transcriptional and epigenetic variances observed in the undifferentiated and differentiated cells originated from different reprogramming mechanisms.
Project description:Induced pluripotent stem cells (iPSCs) were generated from peripheral blood cells of a patient with ID and differentiated into neurons. Label-free phosphoproteomics was used to assess the phosphorylation of proteins in neurons derived from both patients and healthy controls.
Project description:Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid derived cells displayed numerous hallmarks of cancer stem cells, which are chemo and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells. To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines. These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines. Overall, we demonstrate for the first time that metabolism in an ovarian cancer stem cell line is distinct from that of more differentiated isogenic cancer cells, supporting the potential importance of metabolism in the differences between cancer cells and cancer stem cells.
Project description:Chavez2009 - a core regulatory network of OCT4 in human embryonic stem cells
A core OCT4-regulated network has been identified as a test case, to analyase stem cell characteristics and cellular differentiation.
This model is described in the article:
In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach.
Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R
BMC Genomics, 2009, 10:314
Abstract:
BACKGROUND: The transcription factor OCT4 is highly expressed in pluripotent embryonic stem cells which are derived from the inner cell mass of mammalian blastocysts. Pluripotency and self renewal are controlled by a transcription regulatory network governed by the transcription factors OCT4, SOX2 and NANOG. Recent studies on reprogramming somatic cells to induced pluripotent stem cells highlight OCT4 as a key regulator of pluripotency.
RESULTS: We have carried out an integrated analysis of high-throughput data (ChIP-on-chip and RNAi experiments along with promoter sequence analysis of putative target genes) and identified a core OCT4 regulatory network in human embryonic stem cells consisting of 33 target genes. Enrichment analysis with these target genes revealed that this integrative analysis increases the functional information content by factors of 1.3 - 4.7 compared to the individual studies. In order to identify potential regulatory co-factors of OCT4, we performed a de novo motif analysis. In addition to known validated OCT4 motifs we obtained binding sites similar to motifs recognized by further regulators of pluripotency and development; e.g. the heterodimer of the transcription factors C-MYC and MAX, a prerequisite for C-MYC transcriptional activity that leads to cell growth and proliferation.
CONCLUSION: Our analysis shows how heterogeneous functional information can be integrated in order to reconstruct gene regulatory networks. As a test case we identified a core OCT4-regulated network that is important for the analysis of stem cell characteristics and cellular differentiation. Functional information is largely enriched using different experimental results. The de novo motif discovery identified well-known regulators closely connected to the OCT4 network as well as potential new regulators of pluripotency and differentiation. These results provide the basis for further targeted functional studies.
This model is hosted on BioModels Database
and identified
by: MODEL1305010000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:Metabolism is vital to cellular function and tissue homeostasis during human lung development. In utero, embryonic pluripotent stem cells undergo endodermal differentiation towards a lung progenitor cell fate that can be mimicked in vitro using induced human pluripotent stem cells (hiPSCs) to study genetic mutations. To identify differences between wild type and surfactant protein B (SFTPB)-deficient cell lines during endoderm specification towards lung, we used an untargeted metabolomics approach to evaluate the developmental changes in metabolites. We found that the metabolites most enriched during the differentiation from pluripotent stem cell to lung progenitor cell, regardless of cell line, were sphingomyelins and phosphatidylcholines, two important lipid classes in fetal lung development. The SFTPB mutation had no metabolic impact on early endodermal lung development. The identified metabolite signatures during lung progenitor cell differentiation may be utilized as biomarkers for normal embryonic lung development.