Project description:Psoriasis is a chronic inflammatory immune-mediated disorder affecting the skin and other organs including joints. Over 1,300 transcripts are altered in psoriatic involved skin compared to normal skin. Global epigenetic profiles of psoriatic skin have not been described. Here we describe the first genome-wide study of altered CpG methylation in psoriatic skin. We determined the methylation levels at 27,578 CpG sites in skin samples from individuals with psoriasis (12 involved, 8 uninvolved) and 10 unaffected individuals. CpG methylation of involved skin differed from normal skin at 1,108 sites. Twelve mapped to the epidermal differentiation complex, upstream or within genes that are highly up-regulated in psoriasis. Hierarchical clustering of 50 of the top differentially methylated (DM) sites separated psoriatic from normal skin samples. CpG sites where methylation was correlated with gene expression are reported. Sites with inverse correlations between methylation and nearby gene expression include those of KYNU, OAS2, S100A12, and SERPINB3, whose strong transcriptional up-regulation are important discriminators of psoriasis. We observed intrinsic epigenetic differences in uninvolved skin. Pyrosequencing of bisulfite-treated DNA from skin biopsies at three DM loci confirmed earlier findings and revealed a reversion of methylation levels towards the non-psoriatic state after one month of anti-TNF-a therapy. Control n=8 (NN), psoriasis involved n = 19 (PP), psoriasis uninvolved n=8 (PN). Hybridized to Illumina Human 27k methylation array. Paired samples are as follows: PN1 and PP1 PN2 and PP2 PN3 and PP3 PN4 and PP4 PN5 and PP5 PN6 and PP6 PN7 and PP7 PN8 and PP8
Project description:Psoriasis is a chronic inflammatory immune-mediated disorder affecting the skin and other organs including joints. Over 1,300 transcripts are altered in psoriatic involved skin compared to normal skin. Global epigenetic profiles of psoriatic skin have not been described. Here we describe the first genome-wide study of altered CpG methylation in psoriatic skin. We determined the methylation levels at 27,578 CpG sites in skin samples from individuals with psoriasis (12 involved, 8 uninvolved) and 10 unaffected individuals. CpG methylation of involved skin differed from normal skin at 1,108 sites. Twelve mapped to the epidermal differentiation complex, upstream or within genes that are highly up-regulated in psoriasis. Hierarchical clustering of 50 of the top differentially methylated (DM) sites separated psoriatic from normal skin samples. CpG sites where methylation was correlated with gene expression are reported. Sites with inverse correlations between methylation and nearby gene expression include those of KYNU, OAS2, S100A12, and SERPINB3, whose strong transcriptional up-regulation are important discriminators of psoriasis. We observed intrinsic epigenetic differences in uninvolved skin. Pyrosequencing of bisulfite-treated DNA from skin biopsies at three DM loci confirmed earlier findings and revealed a reversion of methylation levels towards the non-psoriatic state after one month of anti-TNF-a therapy.
Project description:We report the application of Illumina small RNA sequencing to normal human skin, as well as uninvolved and involved psoriatic skin. By obtaining over 600 million qualified reads from 20 healthy controls and 47 psoriasis biopsies (uninvolved/involved), we have generated a complete small RNA profile in normal and diseased human skin, with particular emphasis on miRNAs. We report the discovery of 284 putative novel miRNAs as well as 98 differentially expressed miRNAs in psoriatic skin. miRNA discovery and expression profiling in 67 normal and psoriatic human skin biopsies
Project description:We report the application of Illumina small RNA sequencing to normal human skin, as well as uninvolved and involved psoriatic skin. By obtaining over 600 million qualified reads from 20 healthy controls and 47 psoriasis biopsies (uninvolved/involved), we have generated a complete small RNA profile in normal and diseased human skin, with particular emphasis on miRNAs. We report the discovery of 284 putative novel miRNAs as well as 98 differentially expressed miRNAs in psoriatic skin.
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Genome wide DNA methylation profiling of psoriatic (PP), paired uninvolved psoriatic (PN) and normal skin tissues (NN). The Illumina Infinium 450k Human DNA methylation Beadchip v1.2 was used to obtain DNA methylation profiles across approximately 485,000 CpGs in 135 PP, 41PN and 62 NN tissues which were obtained from those who underwent skin biospsies. We not only revealed a genome-wide methylation level pattern for psoriasis, but also identified a strong association between the skin-specific DNAm of 9 DMS and psoriasis.
Project description:IL-20 cytokines are involved in the establishment of psoriasis, a common chronic skin inflammation epidemiologically associated with metabolic syndrome, but molecular mechanisms underlying their over-expression remain to be elucidated. We find that keratinocytes (KCs) expressed IL-20 and lymphocytes expressed IL-22 cytokines up-regulation occurs at post-transcriptional level with stabilization of their RNA messengers. Looking at psoriatic epidermis, we observe that the p38/MK2 pathway is not activated but that the RNA-binding protein (RBP) HuR re-localizes in keratinocytes cytoplasm, suggesting post-transcriptional regulation of numerous mRNAs. HuR ribonucleoprotein immunoprecipitations analyzed by high-throughput sequencing (RIP-Seq) identify potential pre-mature and mature RNA targets for uninvolved and involved skin and confirms that HuR activity is displaced from the nucleus to the cytoplasm. Numerous psoriasis up-regulated transcripts are HuR targets and HuR knockdown reduces expression of transcripts like beta-defensin-2, CXCL-10 or IL-2, suggesting an implication of HuR in pathophysiological processes such as morphological, immune and metabolic inflammatory responses. Finally, metabolic disorders affecting psoriatic keratinocytes are responsible for HuR cytoplasmic localization since a decreased activity of the cellular metabolic sensor AMPK, that is observed in human psoriatic epidermis, is sufficient to promote HuR cytosolic localization as well as IL-20 over-production both in human keratinocytes and in vivo in mouse epidermis where it then initiates psoriasis-like histological changes. These results may provide insights into molecular links between metabolism and post-transcriptional networks during chronic inflammation, as illustrated in psoriasis by mechanisms connecting AMPK, HuR and IL-20. Analysis of HuR-binding RNA in uninvolved versus involved psoriatic samples by RIP-Seq. Samples from five different patients were used for both uninvolved and involved skin. RIP-Seq was also made using a control IgG.
Project description:Analysis of ex vivo isolated lymphatic endothelial cells from the dermis of patients to define type 2 diabetes-induced changes. Results preveal aberrant dermal lymphangiogenesis and provide insight into its role in the pathogenesis of persistent skin inflammation in type 2 diabetes. The ex vivo dLEC transcriptome reveals a dramatic influence of the T2D environment on multiple molecular and cellular processes, mirroring the phenotypic changes seen in T2D affected skin. The positively and negatively correlated dLEC transcripts directly cohere to prolonged inflammatory periods and reduced infectious resistance of patients´ skin. Further, lymphatic vessels might be involved in tissue remodeling processes during T2D induced skin alterations associated with impaired wound healing and altered dermal architecture. Hence, dermal lymphatic vessels might be directly associated with T2D disease promotion. Global gene expression profile of normal dermal lymphatic endothelial cells (ndLECs) compared to dermal lymphatic endothelial cells derived from type 2 diabetic patients (dLECs).Quadruplicate biological samples were analyzed from human lymphatic endothelial cells (4 x diabetic; 4 x non-diabetic). subsets: 1 disease state set (dLECs), 1 control set (ndLECs)