Project description:Pharmaceutical chemicals used in human medicine are released into surface waters via municipal effluents and pose a risk for aquatic organisms. Among these substances are selective serotonin reuptake inhibitors (SSRIs) which can affect aquatic organisms at sub ppb concentrations. To better understand biochemical pathways influenced by SSRIs, evaluate changes in the transcriptome, and identify gene transcripts with potential for biomarkers of exposure to SSRIs; larval zebrafish Danio rerio were exposed (96 h) to two concentrations (25 and 250 µg/L) of the SSRIs, fluoxetine and sertraline, and changes in global gene expression were evaluated (Affymetrix GeneChip® Zebrafish Array). Significant changes in gene expression (>=1.7 fold change, p<0.05) were determined with Partek® Genomics Suite Gene Expression Data Analysis System and ontology analysis was conducted using Molecular Annotation System 3. The number of genes differentially expressed after fluoxetine exposure was 288 at 25 µg/L and 131 at 250 µg/L; and after sertraline exposure was 33 at 25 µg/L and 52 at 250 µg/L. Five genes were differentially regulated in all treatments relative to control, suggesting that both SSRIs share some similar molecular pathways. Among them, expression of the gene coding for FK506 binding protein 5 (FKBP5), which is annotated to stress response regulation, was highly down-regulated in all treatments (results confirmed by qRT-PCR). Gene ontology analysis indicated that regulation of stress response and cholinesterase activity were critical functions influenced by these SSRIs, and suggested that changes in the transcription of FKBP5 or acetylcholinesterase could be useful biomarkers of SSRIs exposure in wild fish. Zebrafish (Danio rerio) were obtained from the Zebrafish Research Facility maintained at the Center for Environmental Biotechnology at the University of Tennessee. Fish husbandry, spawning, and experimental procedures were conducted with approval from the UT Insititutional Animal Care and Use Committee (Protocol #1690-1007). Water for holding fish and conducting experiments (hereafter referred to as fish water) consisted of MilliQ water (Millipore, Bedford, MA) with ions added: 19 mg/L NaHCO3, 1 mg/L sea salt (Instant Ocean Synthetic Sea Salt, Mentor, OH), 10 mg/L CaSO4, 10 mg/L MgSO4, 2 mg/L KCl. Embroyos were obtained by spawning adult fish with no history of contaminant exposure. Fertilization of embryos took place at the same time (<15 minutes), such that larvae used in experiments were of similar age at the time of exposure. All activities (maintenance of adult fish, spawning, and experiments) were conducted in an environmental chamber with a temperature of 27 +/- 1 C and 14:10h light:dark photoperiod. Larval zebrafish (72 hpf) were exposed for 96 h in 200ml fish water containing appropirate amount of SSRI stock (i.e. fluoxetine or sertraline). There were four SSRIs treatments (25 and 250 ug/L fluoxetine and 25 and 250 ug/L sertraline) and one control (no SSRIs) with triplicate beakers and each beaker contained about 100 larval fish. During exposure for 96 hours, beakers were kept covered to prevent water evaporation and fish were not fed (i.e., fish consumed their yolk sac).
Project description:Pharmaceutical chemicals used in human medicine are released into surface waters via municipal effluents and pose a risk for aquatic organisms. Among these substances are selective serotonin reuptake inhibitors (SSRIs) which can affect aquatic organisms at sub ppb concentrations. To better understand biochemical pathways influenced by SSRIs, evaluate changes in the transcriptome, and identify gene transcripts with potential for biomarkers of exposure to SSRIs; larval zebrafish Danio rerio were exposed (96 h) to two concentrations (25 and 250 µg/L) of the SSRIs, fluoxetine and sertraline, and changes in global gene expression were evaluated (Affymetrix GeneChip® Zebrafish Array). Significant changes in gene expression (>=1.7 fold change, p<0.05) were determined with Partek® Genomics Suite Gene Expression Data Analysis System and ontology analysis was conducted using Molecular Annotation System 3. The number of genes differentially expressed after fluoxetine exposure was 288 at 25 µg/L and 131 at 250 µg/L; and after sertraline exposure was 33 at 25 µg/L and 52 at 250 µg/L. Five genes were differentially regulated in all treatments relative to control, suggesting that both SSRIs share some similar molecular pathways. Among them, expression of the gene coding for FK506 binding protein 5 (FKBP5), which is annotated to stress response regulation, was highly down-regulated in all treatments (results confirmed by qRT-PCR). Gene ontology analysis indicated that regulation of stress response and cholinesterase activity were critical functions influenced by these SSRIs, and suggested that changes in the transcription of FKBP5 or acetylcholinesterase could be useful biomarkers of SSRIs exposure in wild fish.
Project description:Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile) is a broad spectrum fungicide used extensively in agricultural crops . The aim of this study is to analyse the effects of Chorothalonil on the gene expression profiles in zebrafish (Danio rerio), exposed to two concentrations of the fungicide in the water. Nominal concentrations were 1) Low 0.007mg/l (environmentally relevent) and 2) High 0.035mg/ml . A commercial third generation microarray for Danio rerio (Agielnt V3, 4x44k) was used to identify patterns of gene expression in male livers during a 96h toxicological assay.
Project description:Tritium is an ubiquist radionuclide which can be found in the environment due to natural and anthropogenic activities, particularly in aquatic ecosystems. In this context, tritium effects on aquatic species such as fish have to be characterized. HTO (tritiated water) effects were therefore investigated in zebrafish, Danio rerio, a common model in toxicology and ecotoxicology with a fully sequenced genome. Experiments were conducted on early life stages. Larvae were exposed to 0.4 and 4 mGy/h of HTO until 10 days post fertilization. Tritium internalization was quantified and effects were investigated using a proteomic analysis. The global analysis of the proteome was performed after protein extraction at 7 and 10 dpf on zebrafish eggs exposed from 3 hpf to 10 dpf.
Project description:This project aimed at identifying developmental stage specific transcript profiles for catecholaminergic neurons in embryos and early larvae of zebrafish (Danio rerio). Catecholaminergic neurons were labeled using transgenic zebrafish strains to drive expression of GFP. At stages 24, 36, 72 and 96 hrs post fertilization, embryos were dissociated and GFP expressing cells sorted by FACS. Isolated RNAs were processed using either polyA selection and libray generation or NanoCAGE. This is the first effort to determine stage specific mRNA profiles of catecholaminergic neurons in zebrafish.
Project description:Comparison of temporal small RNA gene expression profiles from Danio rerio brain. The smallRNA-seq data comprise 5 age groups at 6, 12, 24, 36 and 42 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comparison of temporal small RNA gene expression profiles from Danio rerio skin. The smallRNA-seq data comprise 5 age groups at 6, 12, 24, 36 and 42 months. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Histidine phosphorylation is a reversible post-translational modification that is known to regulate signal transduction in prokaryotes. In an effort to help elucidate the heretofore hidden vertebrate phosphoproteome, this report presents a global phosphorylation analysis of Danio rerio (zebrafish) larvae. Phosphopeptide enrichment was performed using a TiO2 affinity technique. A total of 68 unique phosphohistidine sites were detected on 63 proteins among 1076 unique phosphosites on 708 proteins. This report provides the first phosphohistidine dataset obtained from zebrafish.
Project description:Comparison of Danio rerio liver for 2 age groups treated with Rotenone. The RNA-seq data comprisess two age groups treated with Rotenone. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)