Project description:We report the application of single-molecule-based sequencing technology for transcription profile analysis of S. cerevisiae strains with different genetic background. By combining the whole genome sequence of these strains, we sought to explore the effects of genome mutations on the transcription diversities.
Project description:We report the application of single-molecule-based sequencing technology for transcription profile analysis of two S. cerevisiae strains. By combining the whole genome sequence of these strains,we sought to explore the effects of genomic structure variations on the transcription diversities.
Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome.
Project description:Saccharomyces cerevisiae has been used as a secretion host for production of various products, including pharmaceuticals. However, few antibody molecules have been functionally expressed in S. cerevisiae due to the incompatible surface glycosylation. Our laboratory previously isolated a group of yeast mutant strains with different α-amylase secretory capacities, and these evolved strains have showed advantages for production of some heterologous proteins. However, it is not known whether these secretory strains are generally suitable for pharmaceutical protein production. Here, three non-glycosylated antibody fragments with different configurations (Ran-Fab fragment Ranibizumab, Pex-the scFv peptide Pexelizumab, and Nan-a single V-type domain) were successfully expressed and secreted in three background strains with different secretory capacities, including HA (wild type), MA (evolved strain), and LA (evolved strain). However, the secretion of Ran and Nan were positively correlated with the strains’ secretory capacity, while Pex was most efficiently secreted in the parental strain. Therefore, transcriptional analysis was performed to explore the fundamental changes triggered by the expression of the different pharmaceutical proteins in these selected yeast strains.
Project description:We study the genetics, including microarray karyotyping using comparative genomic hybridization, to explore global changes in the genomic DNA of seven S. cerevisiae strains related to traditional fermentations of very different sources comparing to the sequenced S. cerevisiae laboratory strain (S288C). Our final goal is to determine the adaptive evolution of properties of biotechnological interest in Saccharomyces yeasts. Many copy number variations (CNVs) were observed, especially in genes associated to subtelomeric regions and transposon elements. Among the fermentation strains, differential CNV was observed in genes related to sugar transport and metabolism. An outstanding example of diverse CNV is the gen PUT1, involved in proline assimilation, which correlated with the adaptation of the strains to the presence of this nitrogen source in the media.