Project description:The zygomycete fungi-like Rhizomucor miehei have been extensively exploited for the production of various enzymes. As a thermophilic fungus, R. miehei is capable of growing at temperatures that approach the upper limits for all eukaryotes. In order to study the thermophilic mechanism, the transcriptional profiles of R. miehei CAU432 grown at two different temperatures (at 30°C and 50°C) were investigated by RNA-seq analysis. Approximately 35 million high-quality reads were generated from each library, and 62% reads were uniquely mapped to the genome. A high percentage of reads (67.1%) were mapped to predicted protein-coding genes, while 3.96% reads were distributed in splice junctions, 3.49% reads in antisense transcripts, 2.27% in introns, and 21.9% in other genomic regions. The frequency of reads which mapped to different genes ranged from one to over 300,000. More than 90% of predicted genes (9,680, 93% at 30°C; 9,618, 93.6% at 50°C) were detected with at least one read, while 128 genes and 190 genes were uniquely expressed at 50°C and 30°C, respectively. The results show that 2,117 genes were differently expressed (P<0.001) by the fungus with more than two-fold changes. These genes include 849 up-regulated and 1,268 down-regulated genes in mycelia grown at 50°C. These significantly differently expressed genes include many genes, putatively involved in thermophilic process, such as HSP, chaperones and proteasome.
Project description:Myceliophthora thermophila is a thermophilic fungus with great biotechnological characteristics for industrial applications, which can degrade and utilize all major polysaccharides in plant biomass. Nowadays, it has been developing into a platform for production of enzyme, commodity chemicals and biofuels. Therefore, an accurate genome-scale metabolic model would be an accelerator for this fungus becoming a universal chassis for biomanufacturing. Here we present a genome-scale metabolic model for M. thermophila constructed using an auto-generating pipeline with consequent thorough manual curation. Temperature plays a basic and critical role for the microbe growth. we are particularly interested in the genome wide response at metabolic layer of M. thermophilia as it is a thermophlic fungus. To study the effects of temperature on metabolic characteristics of M. thermophila growth, the fungus was cultivated under different temperature. The metabolic rearrangement predicted using context-specific GEMs integrating transcriptome data.The developed model provides new insights into thermophilic fungi metabolism and highlights model-driven strain design to improve biotechnological applications of this thermophilic lignocellulosic fungus.