Project description:The paper describes a model of tumor invasion to bone marrow.
Created by COPASI 4.26 (Build 213)
This model is described in the article:
Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles
Kun-Wan Chen, Kenneth J Pienta
Theoretical Biology and Medical Modelling 2011, 8:36
Abstract:
Background: The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. Cancer must grow in a primary site, extravasate and survive in the circulation to then intravasate into target organ (invasive species survival in transport). Cancer cells often lay dormant at their metastatic site for a long period of time (lag period for invasive species) before proliferating (invasive spread). Proliferation in the new site has an impact on the target organ microenvironment (ecological impact) and eventually the human host (biosphere impact).
Results: Tilman has described mathematical equations for the competition between invasive species in a structured habitat. These equations were adapted to study the invasion of cancer cells into the bone marrow microenvironment as a structured habitat. A large proportion of solid tumor metastases are bone metastases, known to usurp hematopoietic stem cells (HSC) homing pathways to establish footholds in the bone marrow. This required accounting for the fact that this is the natural home of hematopoietic stem cells and that they already occupy this structured space. The adapted Tilman model of invasion dynamics is especially valuable for modeling the lag period or dormancy of cancer cells.
Conclusions: The Tilman equations for modeling the invasion of two species into a defined space have been modified to study the invasion of cancer cells into the bone marrow microenvironment. These modified equations allow a more flexible way to model the space competition between the two cell species. The ability to model initial density, metastatic seeding into the bone marrow and growth once the cells are present, and movement of cells out of the bone marrow niche and apoptosis of cells are all aspects of the adapted equations. These equations are currently being applied to clinical data sets for verification and further refinement of the models.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:The paper describes a model of tumor invasion to bone marrow.
Created by COPASI 4.26 (Build 213)
This model is described in the article:
Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles
Kun-Wan Chen, Kenneth J Pienta
Theoretical Biology and Medical Modelling 2011, 8:36
Abstract:
Background: The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. Cancer must grow in a primary site, extravasate and survive in the circulation to then intravasate into target organ (invasive species survival in transport). Cancer cells often lay dormant at their metastatic site for a long period of time (lag period for invasive species) before proliferating (invasive spread). Proliferation in the new site has an impact on the target organ microenvironment (ecological impact) and eventually the human host (biosphere impact).
Results: Tilman has described mathematical equations for the competition between invasive species in a structured habitat. These equations were adapted to study the invasion of cancer cells into the bone marrow microenvironment as a structured habitat. A large proportion of solid tumor metastases are bone metastases, known to usurp hematopoietic stem cells (HSC) homing pathways to establish footholds in the bone marrow. This required accounting for the fact that this is the natural home of hematopoietic stem cells and that they already occupy this structured space. The adapted Tilman model of invasion dynamics is especially valuable for modeling the lag period or dormancy of cancer cells.
Conclusions: The Tilman equations for modeling the invasion of two species into a defined space have been modified to study the invasion of cancer cells into the bone marrow microenvironment. These modified equations allow a more flexible way to model the space competition between the two cell species. The ability to model initial density, metastatic seeding into the bone marrow and growth once the cells are present, and movement of cells out of the bone marrow niche and apoptosis of cells are all aspects of the adapted equations. These equations are currently being applied to clinical data sets for verification and further refinement of the models.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Abstract:
The cancer stem cell hypothesis has gained currency in recent times but concerns remain about its scientific foundations because of significant gaps that exist between research findings and comprehensive knowledge about cancer stem cells (CSCs). In this light, a mathematical model that considers hematopoietic dynamics in the diseased state of the bone marrow and peripheral blood is proposed and used to address findings about CSCs. The ensuing model, resulting from a modification and refinement of a recent model, develops out of the position that mathematical models of CSC development, that are few at this time, are needed to provide insightful underpinnings for biomedical findings about CSCs as the CSC idea gains traction. Accordingly, the mathematical challenges brought on by the model that mirror general challenges in dealing with nonlinear phenomena are discussed and placed in context. The proposed model describes the logical occurrence of discrete time delays, that by themselves present mathematical challenges, in the evolving cell populations under consideration. Under the challenging circumstances, the steady state properties of the model system of delay differential equations are obtained, analyzed, and the resulting mathematical predictions arising therefrom are interpreted and placed within the framework of findings regarding CSCs. Simulations of the model are carried out by considering various parameter scenarios that reflect different experimental situations involving disease evolution in human hosts.
Model analyses and simulations suggest that the emergence of the cancer stem cell population alongside other malignant cells engenders higher dimensions of complexity in the evolution of malignancy in the bone marrow and peripheral blood at the expense of healthy hematopoietic development. The model predicts the evolution of an aberrant environment in which the malignant population particularly in the bone marrow shows tendencies of reaching an uncontrollable equilibrium state. Essentially, the model shows that a structural relationship exists between CSCs and non-stem malignant cells that confers on CSCs the role of temporally enhancing and stimulating the expansion of non-stem malignant cells while also benefitting from increases in their own population and these CSCs may be the main protagonists that drive the ultimate evolution of the uncontrollable equilibrium state of such malignant cells and these may have implications for treatment.
Project description:Hematopoietic stem cells give rise to all blood lineages, can fully re-populate the bone marrow, and easily outlive the host organism. To better understand how stem cells remain fit during aging, we analyzed the proteome of hematopoietic stem and progenitor cells.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Thiele2013 - Bone marrow hematopoietic cells
The model of bone marrow hematopoietic cells metabolism is derived from the community-driven global reconstruction of human metabolism (version 2.02, MODEL1109130000
).
This model is described in the article:
A community-driven global reconstruction of human metabolism.
Thiele I, et al
.
Nature Biotechnology
Abstract:
Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven,
consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared
with its predecessors, the reconstruction has improved topological and functional features, including ~2x more reactions and ~1.7x more unique metabolites. Using
Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic
data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically
generated a compendium of 65 cell type-specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will
facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.
This model is hosted on BioModels Database
and identified by: MODEL1310110030
.
To cite BioModels Database, please use: BioModels Database: An enhanced,
curated and annotated resource for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer
to CC0 Public Domain Dedication
for more information.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6