Project description:Zebrafish are an important model organism with inherent advantages that have the potential to make zebrafish a widely applied model for the study of energy homeostasis and obesity. The small size of zebrafish allows for assays on embryos to be conducted in a 96- or 384-well plate format, Morpholino and CRISPR based technologies promote ease of genetic manipulation, and drug treatment by bath application is viable. Moreover, zebrafish are ideal for forward genetic screens allowing for novel gene discovery. Given the relative novelty of zebrafish as a model for obesity, it is necessary to develop tools that fully exploit these benefits. Herein, we describe a method to measure energy expenditure in thousands of embryonic zebrafish simultaneously. We have developed a whole animal microplate platform in which we use 96-well plates to isolate individual fish and we assess cumulative NADH2 production using the commercially available cell culture viability reagent alamarBlue. In poikilotherms the relationship between NADH2 production and energy expenditure is tightly linked. This energy expenditure assay creates the potential to rapidly screen pharmacological or genetic manipulations that directly alter energy expenditure or alter the response to an applied drug (e.g. insulin sensitizers).
Project description:Olsen et al (2010) have shown that induced Diabetes mellitus (DM) in adult Zebrafish results in an impairment of tissue regeneration as monitored by caudal fin regeneration. In those studies, streptozocin was used to induce hyperglycemia in adult zebrafish, and then, following streptozocin withdrawal, a recovery phase was allowed to re-establish euglycemia, due to pancreatic b-cell regeneration. DM-associated impaired fin regeneration continued indefinitely in the metabolic memory state (MM); allowing for subsequent molecular analysis of the underlying mechanisms of MM. This study focuses on elucidating the molecular basis explaining DM-associated impaired fin regeneration and why it persists into the MM state. The analysis of microarray data indicated that of the 14,900 transcripts analyzed, aberrant expression of 71 genes relating to tissue developmental and regeneration processes were identified in DM fish and the aberrant expression of these 71 genes persisted into the MM state. Key regulatory genes of major signal transduction pathways were identified among this group of 71; and therefore, these findings provide a possible explanation for how hyperglycemia induces impaired fin regeneration and why it continues into the MM state. Total RNA was extracted from caudal fin at 0, 12, 24 and 48 hours post amputation from STZ treated (DM) and untreated controls.
Project description:Olsen et al (2010) have shown that induced Diabetes mellitus (DM) in adult Zebrafish results in an impairment of tissue regeneration as monitored by caudal fin regeneration. In those studies, streptozocin was used to induce hyperglycemia in adult zebrafish, and then, following streptozocin withdrawal, a recovery phase was allowed to re-establish euglycemia, due to pancreatic b-cell regeneration. DM-associated impaired fin regeneration continued indefinitely in the metabolic memory state (MM); allowing for subsequent molecular analysis of the underlying mechanisms of MM. This study focuses on elucidating the molecular basis explaining DM-associated impaired fin regeneration and why it persists into the MM state. The analysis of microarray data indicated that of the 14,900 transcripts analyzed, aberrant expression of 71 genes relating to tissue developmental and regeneration processes were identified in DM fish and the aberrant expression of these 71 genes persisted into the MM state. Key regulatory genes of major signal transduction pathways were identified among this group of 71; and therefore, these findings provide a possible explanation for how hyperglycemia induces impaired fin regeneration and why it continues into the MM state. Total RNA was extracted from caudal fin at 0, 12, 24 and 48 hours post amputation from untreated controls and metabolic memory zebrafish.
Project description:The complexes formed by BCL10, MALT1 and specific members of the family of CARMA proteins (CBM complex), have recently focused much attention because they represent a central hub regulating activation of the transcription factor NF-κB following various cellular stimulations. In this manuscript, we report the functional characterization of a Danio rerio 241 amino acids polypeptide ortholog of the Caspase recruiting domain (CARD)-containing protein BCL10. Biochemical studies show that zebrafish Bcl10 (zBcl10) dimerizes and binds to components of the CBM complex. Fluorescence microscopy observations demonstrate that zBcl10 forms cytoplasmic filaments similar to that formed by human BCL10 (hBCL10). Functionally, in human cells zBcl10 is more effective in activating NF-κB compared to hBCL10, possibly due to the lack of carboxy-terminal inhibitory serine residues present in the human protein. Also, depletion experiments carried out through expression of short hairpin RNAs targeting hBCL10 indicate that zBcl10 can functionally replace the human protein. Finally, we show that the zebrafish cell line PAC2 is suitable to carry out reporter assays for monitoring the activation state of NF- kB transcription factor. In conclusion, this work shows that zebrafish may excellently serve as a model organism to study complex and intricate signal transduction pathways, such as those that control NF-κB activation.
Project description:Most organisms modulate their reproductive activity responding to day length by the nocturnal release of melatonin by the pineal gland. This hormone is also responsible for synchronizing reproduction with specific external environment stimuli in order to optimize reproductive success.The aim of this study was to establish the effect of melatonin on zebrafish reproduction.Adult females were daily exposed, via water, to two different doses (100 nM and 1 µM) of melatonin. Melatonin led to an increase of the Gonado Somatic Index (GSI) associated with the increase of eggs production, and the raise of gene and protein levels of vitellogenin (VTG) and estradiol receptor α (ERα) in the liver. The ability of melatonin to increase fecundity was consistent with a significant increase of gene transcription of kiss 1, kiss 2, gnrh3, in the brain, and lh in the pituitary, while in the ovary (in class IIIB follicles), with a significant decrease of two genes codifying for intra-ovarian regulators of premature oocyte maturation, the tgfβ1 and the bmp15. The reduction in the expression of these two genes was concomitant with the increase of lhr and a modulation of mprα and mprβ gene transcription, whose proteins are involved in oocyte maturation. Melatonin also exerted a direct action on follicles as shown by the increase of the oocytes undergoing to germinal vesicle break down (GVBD) and modulated mpr α and β gene expression in the in vitro exposure.These data highlight the effects of melatonin in promoting zebrafish reproduction exerting its effects either in the brain-pituitary and in the gonads.