Project description:Changes in gene expression levels were identified by microarray. Samples were human kidney epithelial cell lines derived from patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and unaffected controls. Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most common inherited kidney disease, is due to mutations in PKD1 (85%) or PKD2 (15%) but has a highly variable phenotypic disease expression. We conducted parallel microarray profiling in normal and diseased human PKD1 cystic kidney cells to identify altered signatures of microRNA and mRNA target genes potentially implicated in disease expression.
Project description:Changes in microRNA expression levels were identified by microarray. Samples were human kidney epithelial cell lines derived from patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and unaffected controls. Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most common inherited kidney disease, is due to mutations in PKD1 (85%) or PKD2 (15%) but has a highly variable phenotypic disease expression. We conducted parallel microarray profiling in normal and diseased human PKD1 cystic kidney cells to identify altered signatures of microRNA and mRNA target genes potentially implicated in disease expression. This dataset contains the results of the microRNA analysis.
Project description:Polycystic Kidney Disease (PKD) is a genetic disease of the kidney characterized by the gradual replacement of normal kidney parenchyma by fluid-filled cysts and fibrotic tissue. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene. Here we present an RNASeq experiment designed to investigate the effect of a kidney specific and Tamoxifen inducible knockout of the Pkd1 gene in mice. 7 mice were grouped into two groups, 4 Tamoxifen treated mice which develop an adult onset Polycystic Kidney Disease phenotype and 3 untreated mice which have WT phenotype.
Project description:Polycystic Kidney Disease (PKD) is a genetic disease of the kidney characterized by the gradual replacement of normal kidney parenchyma by fluid-filled cysts and fibrotic tissue. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene. Here we present an RNASeq experiment designed to investigate the effect of a kidney specific and Tamoxifen inducible knockout of the Pkd1 gene in mice. The Pkd1cko mice were harvested at different time points 2-weeks, 3-weeks, 5-weeks, 10.5-weeks, 11-weeks and 15-weeks after gene inactivation.
Project description:Microvescicles (MV) and exosomes (EX) seem to be involved in the pathogenetic machinery of the autosomal dominant polycystic kidney disease (ADPKD), but, at the moment, no studies have assessed their role in medullary sponge kidney disease (MSK), a sporadic kidney malformation featuring cysts, nephrocalcinosis and recurrent renal stones. To discover their role in this disease we employed a proteomic-based research strategy.
Project description:Autosomal Dominant Polycystic Kidney Disease (ADPKD; MIM ID’s 173900, 601313, 613095) leads to end stage kidney disease, caused by mutations in PKD1 or PKD2. Inactivation of Pkd1 before or after P13 in mice results in distinct early- or late-onset disease. Using a mouse model of ADPKD carrying floxed Pkd1 alleles disrupted using a tamoxifen-inducible Cre recombinase, transcriptomics and metabolomics were applied to follow disease progression in animals induced before P10. Network analysis suggests that Pkd1-cystogenesis does not cause developmental arrest and occurs in the context of gene networks similar to those that regulate/maintain normal kidney morphology/function. These analyses also predict metabolic pathways, notably those controlled by HNF4α, are key elements in postnatal kidney maturation and early steps of cyst formation. To test this hypothesis, metabolic networks were altered by inactivating Hnf4a and Pkd1. The Pkd1/Hnf4a double knock-out have significantly more cystic kidneys thus indicating that modulating metabolic pathways might be an effective therapeutic approach.