Project description:Resveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized double-blind cross-over study for 30 days. Resveratrol supplementation significantly reduced sleeping- and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1alpha protein levels, increased citrate synthase activity, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels, and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces profound metabolic changes in obese subjects, mimicking the effects of calorie restriction. double-blind randomized cross-over study, Expression profiling by microarray
Project description:Resveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized double-blind cross-over study for 30 days. Resveratrol supplementation significantly reduced sleeping- and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1alpha protein levels, increased citrate synthase activity, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels, and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces profound metabolic changes in obese subjects, mimicking the effects of calorie restriction.
Project description:Polyphenolic compounds, such as resveratrol, have recently received widespread interest due to their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology and underlying processes. Nine healthy obese men were supplemented with placebo and 150mg/day resveratrol for 30 days, separated by a 4-week washout period. A postprandial abdominal subcutaneous adipose tissue biopsy was collected to assess adipose tissue morphology and gene expression using microarray analysis. Resveratrol significantly decreased adipocyte size, with a shift towards a reduction in the proportion of large and very large adipocytes and an increase in small adipocytes. Microarray analysis revealed downregulation of Wnt, Notch and BMP/TGF-β signaling pathways and upregulation of pathways involved in cell cycle after resveratrol supplementation, suggesting enhanced adipogenesis. Furthermore, the lysosomal/phagosomal pathway and the transcription factor EB were upregulated, reflecting an alternative pathway of lipid breakdown by autophagy. These data suggest that adipose tissue is an important target tissue for the effects of resveratrol in humans, but further research is necessary to investigate whether it translates into an improved adipose tissue function. In a double-blind randomized crossover study, 9 healthy obese men were supplemented with placebo and 150 mg/day resveratrol for 30 days, with a 4-week washout period in between. At the end of each intervention period, a biopsy was taken from the abdominal subcutaneous adipose tissue, which was subjected to gene expression profiling.
Project description:Polyphenolic compounds, such as resveratrol, have recently received widespread interest due to their ability to mimic effects of calorie restriction. The objective of the present study was to gain more insight into the effects of 30 days resveratrol supplementation on adipose tissue morphology and underlying processes. Nine healthy obese men were supplemented with placebo and 150mg/day resveratrol for 30 days, separated by a 4-week washout period. A postprandial abdominal subcutaneous adipose tissue biopsy was collected to assess adipose tissue morphology and gene expression using microarray analysis. Resveratrol significantly decreased adipocyte size, with a shift towards a reduction in the proportion of large and very large adipocytes and an increase in small adipocytes. Microarray analysis revealed downregulation of Wnt, Notch and BMP/TGF-β signaling pathways and upregulation of pathways involved in cell cycle after resveratrol supplementation, suggesting enhanced adipogenesis. Furthermore, the lysosomal/phagosomal pathway and the transcription factor EB were upregulated, reflecting an alternative pathway of lipid breakdown by autophagy. These data suggest that adipose tissue is an important target tissue for the effects of resveratrol in humans, but further research is necessary to investigate whether it translates into an improved adipose tissue function.
Project description:Resveratrol has been reported to improve metabolic function in metabolically-abnormal rodents and humans, but has not been studied in non-obese people with normal glucose tolerance. We conducted a randomized, double-blind, placebo-controlled trial to evaluate the metabolic effects of 12 weeks of resveratrol supplementation (75 mg/day) in non-obese, postmenopausal women with normal glucose tolerance. Although resveratrol supplementation was well-tolerated and increased plasma resveratrol concentration without adverse effects, it did not change body composition, resting metabolic rate, plasma lipids, or inflammatory markers. A two-stage hyperinsulinemic-euglycemic clamp procedure, in conjunction with stable isotopically-labeled tracer infusions, demonstrated that resveratrol did not increase liver, skeletal muscle, or adipose tissue insulin sensitivity. Consistent with the absence of in vivo metabolic effects, resveratrol did not affect its putative molecular targets, including AMPK, Sirt1, Nampt, and Pgc-1α, in either skeletal muscle or adipose tissue. These findings demonstrate that resveratrol supplementation does not have metabolic effects in non-obese women. We compared gene expression profile in subcutaneous abdominal adipose tissue and skeletal muscle (vastus lateralis) biopsy samples obtained from non-obese people before and after 1) placebo (PLC), 2) resveratrol (RES), and 3) calorie restriction (CR) intervention.
Project description:Obesity, a major risk factor for chronic diseases, is related to dsyfunctional adipose tissue signaling. First human trials suggest benefits of intermittent calorie restriction diet (ICR) in chronic disease prevention that may exceed those of continuous calorie restriction diet (CCR), even at equal net calorie intake. The effect of intermittent calorie restriction on adipose tissue signaling has not been investigated to date. Thus we initiated a randomized controlled trial to analyze the effect of ICR (eu-caloric diet on five days and two days per week with energy restriction of 75%), CCR (daily energy restriction of 20%) and a control group on subcutaneous adipose tissue (SAT) gene expression. 150 overweight or obese non-smoking adults (50 per group, 50% women) were randomly asiged to one of the study arms. SAT biopsies were taken before and after the 12 week intervention phase.
Project description:Resveratrol has been reported to improve metabolic function in metabolically-abnormal rodents and humans, but has not been studied in non-obese people with normal glucose tolerance. We conducted a randomized, double-blind, placebo-controlled trial to evaluate the metabolic effects of 12 weeks of resveratrol supplementation (75 mg/day) in non-obese, postmenopausal women with normal glucose tolerance. Although resveratrol supplementation was well-tolerated and increased plasma resveratrol concentration without adverse effects, it did not change body composition, resting metabolic rate, plasma lipids, or inflammatory markers. A two-stage hyperinsulinemic-euglycemic clamp procedure, in conjunction with stable isotopically-labeled tracer infusions, demonstrated that resveratrol did not increase liver, skeletal muscle, or adipose tissue insulin sensitivity. Consistent with the absence of in vivo metabolic effects, resveratrol did not affect its putative molecular targets, including AMPK, Sirt1, Nampt, and Pgc-1α, in either skeletal muscle or adipose tissue. These findings demonstrate that resveratrol supplementation does not have metabolic effects in non-obese women.
Project description:Feeding resveratrol to Drosophila melanogaster extends lifespan. Studies of microarray show similarities between calorie/dietary restriction and resveratrol on both a gene expression and biological pathway level.
Project description:Cultivation methods used to investigate microbial calorie restriction often result in carbon and energy starvation. This study aims to dissect cellular responses to calorie restriction and starvation in Saccharomyces cerevisiae by using retentostat cultivation. In retentostats, cells are continuously supplied with a small, constant carbon and energy supply, sufficient for maintenance of cellular viability and integrity but insufficient for growth. When glucose-limited retentostats cultivated under extreme calorie restriction were subjected to glucose starvation, calorie-restricted and glucose-starved cells were found to share characteristics such as increased heat-shock tolerance and expression of quiescence-related genes. However, they also displayed strikingly different features. While calorie-restricted yeast cultures remained metabolically active and viable for prolonged periods of time, glucose starvation resulted in rapid consumption of reserve carbohydrates, population heterogeneity due to appearance of senescent cells and, ultimately, loss of viability. Moreover, during starvation, calculated rates of ATP synthesis from storage carbohydrates were 2-3 orders of magnitude lower than steady-state ATP-turnover rates calculated under extreme calorie restriction in retentostats. Stringent reduction of ATP turnover during glucose starvation was accompanied by a strong down-regulation of genes involved in protein synthesis. These results demonstrate that extreme calorie restriction and carbon starvation represent different physiological states in S. cerevisiae. The yeast was first grown for 14 days under extreme calorie restriction in anaerobic, glucose-limited retentostats (Boender et al., 2009, Appl.Environ.Microbiol., 75: 5607-5614.). Subsequently, starvation was started by terminating the glucose feed. Yeast transcriptional reprogramming in response to calorie restriction and starvation was monitored by microarray analysis. Independent duplicate retentostat cultures, and subsequently starvation, were sampled for transcriptome analysis using Affymetrix microarrays. One time-point was sampled during calorie restriction (T0) and four time points were sampled during the starvation phase 10, 30, 60 and 120 minutes after switching of the feed, resulting in a dataset of 10 arrays.
Project description:Feeding resveratrol to Drosophila melanogaster extends lifespan. Studies of microarray show similarities between calorie/dietary restriction and resveratrol on both a gene expression and biological pathway level. 9 samples: 3 biological replicates each of normal diet, restricted diet and normal diet plus resveratrol