ABSTRACT: Gene-expression changes resulting from loss of the mTORC1 component Raptor in murine hematopoietic stem and progenitor cell-enriched populations (HSPC)
Project description:We investigated the role of mTORC1 in murine hematopoiesis by conditionally deleting the Raptor gene in murine hematopoietic stem cells. We observed mutliple alterations evoked by Raptor loss in hematopoiesis and profiled gene-expression alterations induced by raptor loss in Flt3-Lin-Sca1+cKit+ hematopoietic stem and progenitor enriched cell populations, 5 weeks post Raptor deletion. Flt3-Lin-Sca1+cKit+ cells were flow sorted from mice containing homozygous floxed alleles for exon 6 of the Raptor gene in the presence (MT group) or absence (WT group) of the MxCre transgene, which was induced with injections of mice with pIpC 5 weeks before cell isolation.
Project description:We investigated the role of mTORC1 in murine hematopoiesis by conditionally deleting the Raptor gene in murine hematopoietic stem cells. We observed mutliple alterations evoked by Raptor loss in hematopoiesis and profiled gene-expression alterations induced by raptor loss in Flt3-Lin-Sca1+cKit+ hematopoietic stem and progenitor enriched cell populations, 5 weeks post Raptor deletion.
Project description:Hematopoietic cell fate decisions such as self-renewal and differentiation are highly regulated through multiple molecular pathways. One pathway, the ubiquitin proteasome system (UPS), controls protein levels by tagging them with polyubiquitin chains and promoting their degradation through the proteasome. Ubiquitin E3 ligases serve as the substrate-recognition component of the UPS. Through investigating the FBOX family of E3 ligases, we discovered that Fbxo21 was highly expressed in the hematopoietic stem and progenitor cell (HSPC) population, and showed low to no expression in mature myeloid populations. To determine the role of FBXO21 on HSPC maintenance, self-renewal, and differentiation, we generated shRNAs against FBXO21 and a hematopoietic specific Fbxo21 conditional knockout (cKO) mouse model. We found that silencing FBXO21 in HSPCs led to a loss in colony formation and an increase in cell differentiation in vitro. Additionally, stressing the HSPC populations in our Fbxo21 cKO mouse with 5-FU injections resulted in a decrease in survival, despite these populations showing minimal alterations during steady-state hematopoiesis. Although FBXO21 has previously been proposed to regulate cytokine signaling via ASK and p38, our results show that depletion of FBXO21 led to altered ERK signaling in vitro. Together, these findings suggest ubiquitin E3 ligase FBXO21 regulates HSPCs through cytokine mediated pathways.
Project description:The mechanistic target of rapamycin mTORC1 is a key regulator of cell metabolism and autophagy. Despite widespread clinical use of mTOR inhibitors, the role of mTORC1 in renal tubular function and kidney homeostasis remains elusive. By utilizing constitutive and inducible deletion of conditional Raptor alleles in renal tubular epithelial cells, we discovered that mTORC1 deficiency caused a marked concentrating defect, loss of tubular cells and slowly progressive renal fibrosis. Transcriptional profiling revealed that mTORC1 maintains renal tubular homeostasis by controlling mitochondrial metabolism and biogenesis as well as transcellular transport processes involved in counter-current multiplication and urine concentration. Although mTORC2 partially compensated the loss of mTORC1, exposure to ischemia and reperfusion injury exaggerated the tubular damage in mTORC1-deficient mice, and caused pronounced apoptosis, diminished proliferation rates and delayed recovery. These findings identify mTORC1 as an essential regulator of tubular energy metabolism and as a crucial component of ischemic stress responses. Pharmacological inhibition of mTORC1 likely affects tubular homeostasis, and may be particularly deleterious if the kidney is exposed to acute injury. Furthermore, the combined inhibition of mTORC1 and mTORC2 may increase the susceptibility to renal damage. Raptor fl/fl*KspCre and Raptor fl/fl animals were sacrificed at P14 before the development of an overt functional phenotype. Kidneys were split in half and immediately snap frozen in liquid nitrogen.
Project description:Naïve T cells respond to antigen stimulation by exiting from quiescence into clonal expansion and functional differentiation, but the control mechanism is elusive. Here we describe that Raptor/mTORC1-dependent metabolic reprogramming is a central determinant of this transitional process. Loss of Raptor abrogates T cell priming and Th2 cell differentiation, although Raptor function is less important for continuous proliferation of actively cycling cells. mTORC1 coordinates multiple metabolic programs in T cells including glycolysis, lipid synthesis and oxidative phosphorylation to mediate antigen-triggered exit from quiescence. mTORC1 further links glucose metabolism to the initiation of Th2 differentiation by orchestrating cytokine receptor expression and cytokine responsiveness. Activation of Raptor/mTORC1 integrates T cell receptor (TCR) and CD28 co-stimulatory signals in antigen-stimulated T cells. Our studies identify a Raptor/mTORC1-dependent pathway linking signal-dependent metabolic reprogramming to quiescence exit, and this in turn coordinates lymphocyte activation and fate decisions in adaptive immunity. We used microarrays to explore the gene expression profiles differentially expressed in CD4+ T-cells from wild-type (WT) and CD4(cre) x Raptor(fl/fl) mice before and after stimulation with anti CD3/CD28 antibodies.
Project description:Preeclampsia (PE) has been associated with placental dysfunction, resulting in foetal hypoxia, accelerated erythropoiesis and increased erythroblast count in the umbilical cord blood (UCB). Although the detailed effects remain unknown, placental dysfunction can also cause inflammation, nutritional and oxidative stress in the fetus that can affect erythropoiesis. Here, we compared the expression of surface adhesion molecules and erythroid differentiation capacity of UCB hematopoietic stem/ progenitor cells (HSPCs), UCB erythroid profiles along with transcriptome and proteome of these cells between male and female foetuses from PE and normotensive pregnancies. While no significant differences were observed in UCB HSPC migration/ homing and in vitro erythroid colony differentiation, the UCB HSPC transcriptome and the proteomic profile of the in vitro differentiated erythroid cells differed between PE vs normotensive samples. Accordingly, despite absence of significant differences in the UCB erythroid populations in male or female foetuses from PE or normotensive pregnancies, transcriptional changes were observed during erythropoiesis, particularly affecting male foetuses. Pathway analysis suggested deregulation in mTORC1/AMPK signaling pathways controlling cell cycle, differentiation and protein synthesis. These results associate PE with transcriptional and proteomic changes in foetal HSPCs and erythroid cells that may underlie the higher erythroblast count in the UCB in PE.
Project description:The mechanistic target of rapamycin (mTOR) pathway integrates diverse environmental inputs, including immune signals and metabolic cues, to direct T cell fate decisions1. Activation of mTOR, comprised of mTORC1 and mTORC2 complexes, delivers an obligatory signal for proper activation and differentiation of effector CD4+ T cells2,3, whereas in the regulatory T cell (Treg) compartment, the Akt-mTOR axis is widely acknowledged as a crucial negative regulator of Treg de novo differentiation4-8 and population expansion9. However, whether mTOR signaling affects the homeostasis and function of Tregs remains largely unexplored. Here we show that mTORC1 signaling is a pivotal positive determinant of Treg function. Tregs have elevated steady-state mTORC1 activity compared to naïve T cells. Signals via T cell receptor (TCR) and IL-2 provide major inputs for mTORC1 activation, which in turn programs suppressive function of Tregs. Disruption of mTORC1 through Treg-specific deletion of the essential component Raptor leads to a profound loss of Treg suppressive activity in vivo and development of a fatal early-onset inflammatory disorder. Mechanistically, Raptor/mTORC1 signaling in Tregs promotes cholesterol/lipid metabolism, with the mevalonate pathway particularly important for coordinating Treg proliferation and upregulation of suppressive molecules CTLA-4 and ICOS to establish Treg functional competency. In contrast, mTORC1 does not directly impact the expression of Foxp3 or anti- and pro-inflammatory cytokines in Tregs, suggesting a non-conventional mechanism for Treg functional regulation. Lastly, we provide evidence that mTORC1 maintains Treg function partly through inhibiting the mTORC2 pathway. Our results demonstrate that mTORC1 acts as a fundamental ‘rheostat’ in Tregs to link immunological signals from TCR and IL-2 to lipogenic pathways and functional fitness, and highlight a central role of metabolic programming of Treg suppressive activity in immune homeostasis and tolerance. We used microarrays to explore the gene expression profiles differentially expressed in regulatory T-cells from wild-type and CD4(cre) x Raptor(fl/fl) mice
Project description:Hematopoietic stem cells are both necessary and sufficient to sustain the complete blood system of vertebrates. Here we show that Nfix, a member of the nuclear factor I (Nfi) family of transcription factors, is highly expressed by hematopoietic stem and progenitor cells (HSPC) of murine adult bone marrow. Although shRNA mediated knockdown of Nfix expression in Lineage-Sca-1+c-Kit+ HSPC had no effect on in vitro cell growth or viability, Nfix-depleted HSPC displayed a significant loss of colony forming potential, as well as short- and long-term in vivo hematopoietic repopulating activity. Analysis of recipient mice 4-20 days post-transplant revealed that Nfix-depleted HSPC establish in the bone marrow but fail to persist due to increased apoptotic cell death. Gene expression profiling of Nfix-depleted HSPC reveals that loss of Nfix expression in HSPC is concomitant with a decrease in the expression of multiple genes known to be important for HSPC survival, such as Erg, Mecom, Mpl and Prdm16. These data reveal that Nfix is a novel regulator of HSPC survival post-transplantation and establish, for the first time, a role for Nfi genes in the regulation of this cellular compartment. 3 NFIX depleted samples are compared to 3 wt samples
Project description:Increased expression of Kruppel like factor 7 (KLF7) is an independent predictor of poor outcome in pediatric acute lymphoblastic leukemia. The contribution of KLF7 to hematopoiesis has not been previously described. Herein, we characterized the effect on murine hematopoiesis of the loss of KLF7 and enforced expression of KLF7. Long-term multilineage engraftment of Klf7-/- cells was comparable to control cells, and self-renewal, as assessed by serial transplantation, was not affected. Enforced expression of KLF7 results in a marked suppression of myeloid progenitor cell growth and a loss of short- and long-term repopulating activity. Interestingly, enforced expression of KLF7, while resulting in multi-lineage growth suppression that extended to hematopoietic stem cells and common lymphoid progenitors, spared T cells and enhanced the survival of early thymocytes. RNA expression profiling of KLF7-overexpressing hematopoietic progenitors identified several potential target genes mediating these effects. Notably, the known KLF7 target Cdkn1a (p21Cip1/Waf1) was not induced by KLF7, and loss of CDKN1A does not rescue the repopulating defect. These results suggest that KLF7 is not required for normal hematopoietic stem and progenitor (HSPC) function, but increased expression, as seen in a subset of lymphoid leukemia, inhibits myeloid cell proliferation and promotes early thymocyte survival. KLF7 KO vs WT HSPC expression array: KLS (lineage- c-Kit+ Sca-1+) cells were sorted from the bone marrow of Klf7-/- chimeras at 12 weeks post-transplant. Fetal liver cells were used to establish chimeric mice (C57Bl/6 background) containing a mixture of Klf7+/+ and Klf7-/- bone marrow cells.
Project description:mTOR senses nutrient and energy status to regulate cell survival and metabolism in response to environmental changes. Surprisingly, targeted mutation of Tsc1, a negative regulator of mTORC1, caused a broad reduction in miRNAs due to Drosha degradation. Conversely, targeted mutation of Raptor, an essential component of mTORC 1, increased miRNA biogenesis. mTOR activation increased expression of Mdm2, which is hereby identified as the necessary and sufficient ubiquitin E3 ligase for Drosha. Drosha was induced by nutrient and energy deprivation and conferred resistance to glucose deprivation. Using a high throughput screen of a miRNA library, we identified 4 miRNAs that were necessary and sufficient to protect cells against glucose deprivation-induced apoptosis. These miRNA was regulated by glucose through the mTORC1-MDM2- Drosha axis. Taken together, our data reveal an mTOR-Mdm2-Drosha pathway in mammalian cells that broadly regulates miRNA biogenesis as a response to alteration in cellular environment. Deletion of Raptor caused a global increase in both miRNA and pre-miRNA in mouse bone marrow hematopoietic stem and progenitor cells(HSPCs).