Project description:The foodborne pathogen Listeria monocytogenes uses a number of transcriptional regulators, including the negative regulator CtsR, to control gene expression under different environmental conditions and in response to stress. Gene expression patterns of DctsR log phase cells were compared to both wt and ictsR-mcsA log phase cells grown with 0.5mM IPTG to identify CtsR-dependent genes.We identified 62 CtsR-dependent genes that showed significant expression ratios (adj. P < 0.05), with ≥ 1.5-fold differential expression either between ΔctsR and wt or between ΔctsR and ictsR-mcsA. Keywords: Listeria monocytogenes, CtsR regulon, log phase
Project description:Transcriptional profling of a Listeria monocytogenes under pressure comparing ctsR mutant and wild type one condition (pressure 450 Moa, 3min) experiment, mutant vs. wild type, 2 biological replicates, two technical replicates
Project description:transcriptional profiling of L. monocytogenes ctsR mutant under pressure treatment SUBMITTER_CITATION: Liu, Y., Huang, L., Joerger, R.D., Gunther, N.W. 2012. Genes that are involved in high hydrostatic pressure treatments in a Listeria monocytogenes Scott A ctsR deletion mutant. Journal of Microbial and Biochemical Technology. 4:050-056.
Project description:transcriptional profiling of L. monocytogenes ctsR mutant under pressure treatment Two-condition experiment: mutant under pressure (450Mpa, 3min) vs. normal condition, two biological replicates.
Project description:Transcriptional profling of a Listeria monocytogenes under nisin treatment comparing ctsR mutant and wild type one condition (nisin treament 20ug/ml, 24 hours) experiment, ctsR mutant vs. wild type Listeria monocytogenes Scott A, 2 biological replicates, 4 technical replicates
Project description:Listeria monocytogenes strain 10403S has been studied extensively for stress response activity toward multiple stressors (acid, osmotic, cold, high temperature, etc.) as well as multiple stress regulons (SigB, CtsR, HrcA, etc.). Here we aimed to determine the transcriptional response of Listeria monocytogenes in early log phase towards the strong oxidative stress imposed by ClO2. The elucidation of such a response allows for further a more completel understanding of the mechanism of inactivation by sanitizers, specifically ClO2.
Project description:Listeria monocytogenes strain 10403S has been studied extensively for stress response activity toward multiple stressors (acid, osmotic, cold, high temperature, etc.) as well as multiple stress regulons (SigB, CtsR, HrcA, etc.). Here we aimed to determine the transcriptional response of Listeria monocytogenes in early log phase towards the strong oxidative stress imposed by ClO2. The elucidation of such a response allows for further a more completel understanding of the mechanism of inactivation by sanitizers, specifically ClO2. Independent RNA isolations were performed for strain 10403S with and without exposure to ClO2 from cells grown to early log phase. Four biological replicates were used in competitive whole-genome microarray experiments. For each set of hybridizations, RNA from a control sample of Listeria monocytogenes was hybridized with RNA from a culture of L. monocytogenes following exposure to ClO2. Dye swapping was performed for the four replicates to mitigate any concerns of dye bias.