Project description:Primary hyperparathyroidism is a common endocrine disorder frequently affecting postmenopausal women. In this study we have investigated expression of the prolactin receptor (PRLr) in a panel of 37 sporadic parathyroid tumours, as well as functionality in vitro in cultured parathyroid tumour cells. High levels of the prolactin receptor gene (PRLR) transcripts were demonstrated in parathyroid tissues as compared to other reference tissues and breast cancer cells. PRLr products of 60/70 kDa were highly expressed in all parathyroid tumours. In addition varying levels of the 80 kDa PRLr isoform, with known proliferative activity, were demonstrated. In parathyroid tumours PRLr immunoreactivity was observed in cytoplasm in all cases and in addition in the plasma membrane (n = 12) or enlarged lysosomes (n = 4). In normal parathyroid rim PRLr was expressed in cytoplasm and granulae. In in vitro studies of short-term cultured human parathyroid tumour cells prolactin stimulation was associated with transcriptional changes in JAK/STAT, RIG-I like receptor and type II interferon signaling pathways as documented by gene expression profiling. Moreover, PRLR gene expression in parathyroid tumors was significantly inversely correlated with plasma total Ca2+ levels. In conclusion, the prolactin receptor was found highly abundant in human parathyroid gland, parathyroid tumours, correlated with patient Ca2+ levels and functionally responsive to physiological levels of prolactin. These findings suggest a role for the prolactin receptor in human parathyroid adenomas. Expression profiling was done in parathyroid adenomas subjected to prolactin treatment in culture. In addition, corresponding paraffin sections were obtained for verification of PRLr expression by immunohistochemistry. 200 mg/L prolactin (recombinant humanM-BM- prolactin, Cat. No. JM-4687-50, MBL Woburn, MA) was added to 1M-CM-^W 10^6 attached parathyroid tumour cells. Cells were harvested using RNAlater (QIAGEN) and homogenized with QIAshredder for RNA extraction after 3 h and 24 h in culture, respectively. Negative controls were collected in parallel with each case at the same time points. RNA was extracted using QIA Cube, and quality assessed with Bioanalyser and Nanodrop. Expression array profiling and data analysis was done at the KI core facility Bioinformatics and Expression Analysis (BEA, Novum, Huddinge) using the Affymetrix platform and the TITAN ST 1.1 array. A total of 16 samples were analysed including 4 parathyroid adenomas cultured for 3 h or 24 h in the presence of prolactin plus control samples cultured in parallel without prolactin.
Project description:Primary hyperparathyroidism is a common endocrine disorder frequently affecting postmenopausal women. In this study we have investigated expression of the prolactin receptor (PRLr) in a panel of 37 sporadic parathyroid tumours, as well as functionality in vitro in cultured parathyroid tumour cells. High levels of the prolactin receptor gene (PRLR) transcripts were demonstrated in parathyroid tissues as compared to other reference tissues and breast cancer cells. PRLr products of 60/70 kDa were highly expressed in all parathyroid tumours. In addition varying levels of the 80 kDa PRLr isoform, with known proliferative activity, were demonstrated. In parathyroid tumours PRLr immunoreactivity was observed in cytoplasm in all cases and in addition in the plasma membrane (n = 12) or enlarged lysosomes (n = 4). In normal parathyroid rim PRLr was expressed in cytoplasm and granulae. In in vitro studies of short-term cultured human parathyroid tumour cells prolactin stimulation was associated with transcriptional changes in JAK/STAT, RIG-I like receptor and type II interferon signaling pathways as documented by gene expression profiling. Moreover, PRLR gene expression in parathyroid tumors was significantly inversely correlated with plasma total Ca2+ levels. In conclusion, the prolactin receptor was found highly abundant in human parathyroid gland, parathyroid tumours, correlated with patient Ca2+ levels and functionally responsive to physiological levels of prolactin. These findings suggest a role for the prolactin receptor in human parathyroid adenomas.
Project description:Stimulation of estrogen receptor beta in PHPT, genetic changes after 24 and 48h of treatments vs. Control Treatment of parathyroid adenomas (4 patients, 4 adenomas) with DPN 24h (4 samples), DPN 48h (4 samples), OHT 24h (4 samples), OHT 48h (4 samples), control 24h (3 samples), control 48h (4 samples). Omission of 1 sample based on low RNA quality.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:We genetically characterized parathyroid adenomas with large glandular weights, for which independent observations suggest pronounced clinical manifestations. Large parathyroid adenomas (LPTAs) were defined as the 5% largest sporadic parathyroid adenomas identified among the 590 cases operated on in our institution during 2005-2009. The LPTA group showed a higher relative number of male cases and significantly higher levels of total plasma and ionized serum calcium (P <0.001). Further analysis of 21 LPTAs revealed low MIB-1 proliferation index (0.1-1.5%), MEN1 mutations in 5 cases and one HRPT2 mutation. Total or partial loss of parafibromin expression was observed in 10 tumors, two of which also showed loss of APC expression. Using array-CGH, we demonstrated recurrent copy number alterations most frequently involving loss in 1p (29%), gain in 5 (38%) and loss in 11q (33%). Totally 21 minimal overlapping regions were defined for losses in 1p, 7q, 9p, 11 and 15q, and gains in 3q, 5, 7p, 8p, 16q, 17p and 19q. In addition, 12 tumors showed gross alterations of entire or almost entire chromosomes, most frequently gain of 5 and loss of 11. While gain of 5 was the most frequent alteration observed in LPTAs, it was only detected in a small proportion (4/58 cases, 7%) of parathyroid adenomas. A significant positive correlation was observed between parathyroid hormone level and total copy number gain (r = 0.48, P = 0.031). These results support that LPTAs represent a group of patients with pronounced parathyroid hyperfunction and associated with specific genomic features.
Project description:We genetically characterized parathyroid adenomas with large glandular weights, for which independent observations suggest pronounced clinical manifestations. Large parathyroid adenomas (LPTAs) were defined as the 5% largest sporadic parathyroid adenomas identified among the 590 cases operated on in our institution during 2005-2009. The LPTA group showed a higher relative number of male cases and significantly higher levels of total plasma and ionized serum calcium (P <0.001). Further analysis of 21 LPTAs revealed low MIB-1 proliferation index (0.1-1.5%), MEN1 mutations in 5 cases and one HRPT2 mutation. Total or partial loss of parafibromin expression was observed in 10 tumors, two of which also showed loss of APC expression. Using array-CGH, we demonstrated recurrent copy number alterations most frequently involving loss in 1p (29%), gain in 5 (38%) and loss in 11q (33%). Totally 21 minimal overlapping regions were defined for losses in 1p, 7q, 9p, 11 and 15q, and gains in 3q, 5, 7p, 8p, 16q, 17p and 19q. In addition, 12 tumors showed gross alterations of entire or almost entire chromosomes, most frequently gain of 5 and loss of 11. While gain of 5 was the most frequent alteration observed in LPTAs, it was only detected in a small proportion (4/58 cases, 7%) of parathyroid adenomas. A significant positive correlation was observed between parathyroid hormone level and total copy number gain (r = 0.48, P = 0.031). These results support that LPTAs represent a group of patients with pronounced parathyroid hyperfunction and associated with specific genomic features. We applied high-resolution array-CGH to assess copy number alterations (CNAs) in 21 tumors representing the 5% largest sporadic parathyroid adenomas in our institution.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:PurposeWe investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level.MethodsSNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively.ResultsSix of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes.ConclusionsThere is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.