Project description:The cell-type-specific function of transcription factors (TFs) is crucial for determining several cellular identities. It is unclear how a single TF can function specifically in different cell types. Here, we define the molecular features that enable OCT4 to reprogram somatic cells into pluripotent or trophoblast stem cells, maintain the self-renewal of embryonic stem (ES) cells, and drive lineage commitment during early embryonic development. Embedded within the intrinsically disordered regions (IDRs) of OCT4, we uncover short linear peptides that are essential for reprogramming (SLiPERs) but dispensable for ES self-renewal. SLiPERs adopt a quasi-ordered state and, during reprogramming, recruit a unique set of proteins to closed chromatin that are unnecessary for ES self-renewal. Interestingly, SLiPERs are not required during early gastrulation but are essential for embryos to develop beyond late gastrulation. Removing SLiPERs leads to aberrant OCT4 binding, derailing the regular transition of ES cells out of pluripotency. Our findings identify modules within IDRs that contribute to the functional versatility and specificity of TFs.
Project description:Chavez2009 - a core regulatory network of OCT4 in human embryonic stem cells
A core OCT4-regulated network has been identified as a test case, to analyase stem cell characteristics and cellular differentiation.
This model is described in the article:
In silico identification of a core regulatory network of OCT4 in human embryonic stem cells using an integrated approach.
Chavez L, Bais AS, Vingron M, Lehrach H, Adjaye J, Herwig R
BMC Genomics, 2009, 10:314
Abstract:
BACKGROUND: The transcription factor OCT4 is highly expressed in pluripotent embryonic stem cells which are derived from the inner cell mass of mammalian blastocysts. Pluripotency and self renewal are controlled by a transcription regulatory network governed by the transcription factors OCT4, SOX2 and NANOG. Recent studies on reprogramming somatic cells to induced pluripotent stem cells highlight OCT4 as a key regulator of pluripotency.
RESULTS: We have carried out an integrated analysis of high-throughput data (ChIP-on-chip and RNAi experiments along with promoter sequence analysis of putative target genes) and identified a core OCT4 regulatory network in human embryonic stem cells consisting of 33 target genes. Enrichment analysis with these target genes revealed that this integrative analysis increases the functional information content by factors of 1.3 - 4.7 compared to the individual studies. In order to identify potential regulatory co-factors of OCT4, we performed a de novo motif analysis. In addition to known validated OCT4 motifs we obtained binding sites similar to motifs recognized by further regulators of pluripotency and development; e.g. the heterodimer of the transcription factors C-MYC and MAX, a prerequisite for C-MYC transcriptional activity that leads to cell growth and proliferation.
CONCLUSION: Our analysis shows how heterogeneous functional information can be integrated in order to reconstruct gene regulatory networks. As a test case we identified a core OCT4-regulated network that is important for the analysis of stem cell characteristics and cellular differentiation. Functional information is largely enriched using different experimental results. The de novo motif discovery identified well-known regulators closely connected to the OCT4 network as well as potential new regulators of pluripotency and differentiation. These results provide the basis for further targeted functional studies.
This model is hosted on BioModels Database
and identified
by: MODEL1305010000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:Embryonic stem cell (ESC) self-renewal and differentiation are governed by a broad-ranging regulatory network. Although the transcriptional regulatory mechanisms involved have been investigated extensively, post-transcriptional regulation is still poorly understood. Here we describe a critical role of the THO complex in ESC self-renewal and differentiation. We show that THO preferentially interacts with pluripotency gene transcripts through Thoc5, and is required for self-renewal at least in part by regulating their export and expression. During differentiation, THO loses its interaction with those transcripts due to reduced Thoc5 expression, leading to decreased expression of pluripotency proteins that facilitates exit from self-renewal. THO is also important for the establishment of pluripotency, as its depletion inhibits somatic cell reprogramming and blastocyst development. Together, our data indicate that THO regulates pluripotency gene mRNA export to control ESC self-renewal and differentiation, and therefore uncover a role for this aspect of post-transcriptional regulation in stem cell fate specification. mouse J1 cells were transfected with non-targeting (NT), Thoc2, and Thoc5 siRNAs. Total RNA was isolated 96 hours after transfection.
Project description:Tip5/Baz2a Regulates Chromatin Architecture and Gene Expression to Maintain Self-renewal and Pluripotency of Embryonic Stem Cells [microarray]
Project description:Tip5/Baz2a Regulates Chromatin Architecture and Gene Expression to Maintain Self-renewal and Pluripotency of Embryonic Stem Cells [ChIP-seq]
Project description:Embryonic stem cell (ESC) self-renewal and differentiation is governed by a comprehensive regulatory network. Although the transcriptional regulation has been extensively investigated, post-transcriptional mechanisms controlling the ESC state are poorly understood. Here we describe a critical role of the THO complex in ESC self-renewal and differentiation. We show that THO preferentially interacts with pluripotency gene transcripts through Thoc5, and is required for self-renewal by regulating their export and expression. During differentiation, THO loses its interaction with those transcripts due to reduced Thoc5 expression, which leads to decreased expression of pluripotency proteins and facilitates differentiation. Finally, THO is also important for the establishment of pluripotency, as its depletion inhibits somatic cell reprogramming and blastocyst development. Together, our data indicates that THO regulates pluripotency gene mRNA export to control ESC self-renewal and differentiation, and uncovers a novel mechanism of post-transcriptional regulation in stem cell fate specification. RNA IP was conducted by use of antibody against Thoc2, the precipitated RNA was used to generate library using illumina Kit, and subsequently sequenced by miSeq