Project description:Staphylococcus aureus has been recognized as an important cause of human disease for more than 100 years. Resistance to multiple classes of antibiotics is becoming an increasingly difficult problem in the management of methicillin-resistant S. aureus (MRSA) and vancomycin-intermediate resistant S. aureus (VISA) infections. One approach to the MRSA and VISA problem, involves the discovery and development of new natural antimicrobials. The antimicrobial properties of essential oils of plant origin have been recognized for many years. In this study 0.1% of commercial cold pressed terpeneless Valencia orange oil (CPV) showed inhibitory and lytic activity against MRSA and VISA. To identify the mechanisms of action of CPV genomic response of CPV treated MRSA was analyzed by transcriptional profiling. Results showed alteration in the expression of cell wall peptidoglycan biosynthesis associated genes in the CPV treated cells. Transmission electron microscopic observation of CPV treated MRSA cells exhibited cell wall damage and cell lysis. Overall results of this study suggest that CPV may be a potential anti-staphylococcal agent for MRSA.
Project description:Staphylococcus aureus has been recognized as an important cause of human disease for more than 100 years. Resistance to multiple classes of antibiotics is becoming an increasingly difficult problem in the management of methicillin-resistant S. aureus (MRSA) and vancomycin-intermediate resistant S. aureus (VISA) infections. One approach to the MRSA and VISA problem, involves the discovery and development of new natural antimicrobials. The antimicrobial properties of essential oils of plant origin have been recognized for many years. In this study 0.1% of commercial cold pressed terpeneless Valencia orange oil (CPV) showed inhibitory and lytic activity against MRSA and VISA. To identify the mechanisms of action of CPV genomic response of CPV treated MRSA was analyzed by transcriptional profiling. Results showed alteration in the expression of cell wall peptidoglycan biosynthesis associated genes in the CPV treated cells. Transmission electron microscopic observation of CPV treated MRSA cells exhibited cell wall damage and cell lysis. Overall results of this study suggest that CPV may be a potential anti-staphylococcal agent for MRSA. Overnight grown S. aureus COL was inoculated in TSB medium (20 ml) in a 50 ml Erlenmeyer flask and incubated at 37°C, with shaking at 200 rpm. Growth was measured at regular intervals at 600 nm until OD reached approximately 0.4. Based on the GIC study ½ x MIC concentration of EO was added for 15 min of challenge. Control cultures were not challenged with EO and were also incubated for 15 min. Total bacterial RNA was isolated as previously described and the RNA samples were then converted to fluorescently-labeled cDNA and hybridized to S. aureus microarrays version 6 (NIAID's Pathogen Functional Genomics Resource Center). Hybridization signals were scanned using an Axon4000B scanner (Molecular Devices, Sunnyvale, CA ) with Acuity 6.0 software and scans were saved as TIFF image. Scans were analyzed using TIGR-Spotfinder (www.tigr.org/software/) software and the local background was subsequently subtracted. The data set was normalized by applying the LOWESS algorithm using TIGR-MIDAS (www.tigr.org/software/) software. The normalized log2 ratio of test/reference signal for each spot was recorded. Genes with less than three data points were considered unreliable, and their data points were discarded. The averaged log2 ratios for each remaining gene on the 6 replicate slides were ultimately calculated. Significant changes of gene expression were identified with SAM (significance analysis of microarrays; www.tat.stanford.edu/~tibs/SAM/index.html. Contents of raw data files: Channel A = Cy3 dye Channel B = Cy5 dye
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) infections result in more than 200,000 hospitalizations and 10,000 deaths in the United States each year and remain an important medical challenge. To better understand the transcriptome of Staphylococcus aureus USA300 NRS384, a community-acquired MRSA strain, we have conducted an RNA-Seq experiment on WT samples.
Project description:Methicillin-resistant Staphylococcus aureus is one of the major causative agents associated to infections with a high morbidity and mortality in hospitals worldwide. In previous studies, we reported that lignan 3'-demethoxy-6-O-demethylisoguaiacin isolated and characterized from Larrea tridentata showed the best activity towards methicillin-resistant S. aureus. Understanding of mechanism of action of drugs allows design drugs in a better way. Therefore, we employed microarray to obtain gene expression profile of methicillin-resistant S. aureus after exposure to 3'-demethoxy-6-O-demethylisoguaiacin. The results showed that lignan had an effect on cell membrane affecting proteins of the ATP-binding cassette (ABC) transport system causing bacteria death.
Project description:Background: Telavancin is a novel semi-synthetic lipoglycopeptide derivative of vancomycin with a decylaminoethyl side chain that is active against Gram-positive bacteria including Staphylococcus aureus strains resistant to methicillin or vancomycin. This study describes transcriptome alterations in S. aureus strain ATCC29213 treated with telavancin for 15 min and 60 min in comparing with other agents treatment, including vancomycin, enduracidin, m-chlorophenylhydrazone.
Project description:Methicillin-resistant Staphylococcus aureus is one of the major causative agents associated to infections with a high morbidity and mortality in hospitals worldwide. In previous studies, we reported that lignan 3'-demethoxy-6-O-demethylisoguaiacin isolated and characterized from Larrea tridentata showed the best activity towards methicillin-resistant S. aureus. Understanding of mechanism of action of drugs allows design drugs in a better way. Therefore, we employed microarray to obtain gene expression profile of methicillin-resistant S. aureus after exposure to 3'-demethoxy-6-O-demethylisoguaiacin. The results showed that lignan had an effect on cell membrane affecting proteins of the ATP-binding cassette (ABC) transport system causing bacteria death. This study consisted of comparison of isolated RNA of MRSA not treated and MRSA treated with lignan 3'-demethoxy-6-O-demethylisoguaiacin. Both RNAs samples were differentially dyed with Cy3 and Cy5 during cDNA synthesis and hybridized on DNA chip. Afterwards, the chip was scanned in a GenePix 4000B scanner. The resulting gene expression profile was analyzed in databases for functional annotations to find a potential mechanism of the lignan in MRSA.