Project description:CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, III) each recognize and target destruction of foreign invader nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr proteins (Type III-B) associated with one of two primary size forms of crRNAs and functions through homology-dependent cleavage of target RNAs. In the current study, we have isolated and characterized two additional native Pfu CRISPR-Cas complexes containing either Csa (Type I-A) or Cst (Type I-G) proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by tandem mass spectrometry and immunoblotting and the crRNAs by RNA deep sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from each of seven total CRISPR loci and contain identical 5’ ends (8-nt CRISPR RNA repeat-derived 5’ tag sequences) but heterogeneous 3’ ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3’ end processing pathways following primary cleavage of common pre-crRNAs. We predict that the newly identified Pfu Type I-A (Csa) and Type I-G (Cst)-containing crRNPs, like other previously characterized Type I CRISPR-Cas effector complexes, each function by carrying out crRNA-guided DNA targeting of invading mobile genetic elements. Taken together, our in-depth characterization of the three isolated native complexes provides clear evidence for three compositionally distinct crRNPs containing either Cmr, Csa, or Cst Cas proteins that together make up an impressive arsenal of CRISPR-Cas defense for a single organism. 4 Samples: Protein-associated small RNAs
Project description:CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, III) each recognize and target destruction of foreign invader nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr proteins (Type III-B) associated with one of two primary size forms of crRNAs and functions through homology-dependent cleavage of target RNAs. In the current study, we have isolated and characterized two additional native Pfu CRISPR-Cas complexes containing either Csa (Type I-A) or Cst (Type I-G) proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by tandem mass spectrometry and immunoblotting and the crRNAs by RNA deep sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from each of seven total CRISPR loci and contain identical 5’ ends (8-nt CRISPR RNA repeat-derived 5’ tag sequences) but heterogeneous 3’ ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3’ end processing pathways following primary cleavage of common pre-crRNAs. We predict that the newly identified Pfu Type I-A (Csa) and Type I-G (Cst)-containing crRNPs, like other previously characterized Type I CRISPR-Cas effector complexes, each function by carrying out crRNA-guided DNA targeting of invading mobile genetic elements. Taken together, our in-depth characterization of the three isolated native complexes provides clear evidence for three compositionally distinct crRNPs containing either Cmr, Csa, or Cst Cas proteins that together make up an impressive arsenal of CRISPR-Cas defense for a single organism.
Project description:Semiconductor sequencing of alkaline degraded total RNA from Pyrococcus furiosus annotated for ”The 23S ribosomal RNA from Pyrococcus furiosus is circularly permuted” published in Frontiers in Microbiology”
Project description:Small RNA Sequencing from Pyrococcus furiosus Keywords: Small RNA Analysis Analysis of Small RNA from one sample of Pyrococcus furiosus
Project description:Analysis of CRISPR RNAs from both total Pyrococcus furiosus RNA and those that co-purify with the Cmr complex, which has been predicted to be involved in RNA-mediated targeting of foreign RNAs in prokaryotes. Small RNAs (20 - 70 nts) were isolated either from total Pyrococcus furiosus RNA or RNAs isolated from immunopurified Cmr complexes. The RNAs were cloned and sequenced using the Illumina platform. Results provide insight into the anatomy of Cmr2-associated CRISPR RNAs.
Project description:Analysis of CRISPR RNAs from both total Pyrococcus furiosus RNA and those that co-purify with the Cmr complex, which has been predicted to be involved in RNA-mediated targeting of foreign RNAs in prokaryotes. Small RNAs (20 - 70 nts) were isolated either from total Pyrococcus furiosus RNA or RNAs isolated from immunopurified Cmr complexes. The RNAs were cloned and sequenced using the Illumina platform. Results provide insight into the anatomy of Cmr2-associated CRISPR RNAs. 2 Samples: total small RNAs vs Cmr2-associated small RNAs
Project description:Experimentally mapped transcriptome structure of Pyrococcus furiosus DSM 3638 by hybridizing total RNA (including RNA species <200 nt) to genome-wide high-density tiling arrays (60 mer probes tiled every 16 nt).