Project description:The ability of many viruses to manipulate the host antiviral immune response often results in complex host-pathogen interactions. In order to study the interaction of dengue virus (DENV) with the Aedes aegypti immune response, we have characterized the DENV infection-responsive transcriptome of the immune-competent A. aegypti cell line Aag2. As in mosquitoes, DENV infection transcriptionally activated the cell line Toll pathway and a variety of cellular physiological systems. Most notably, however, DENV infection down-regulated the expression levels of numerous immune signaling molecules and antimicrobial peptides (AMPs). Functional assays showed that transcriptional induction of AMPs from the Toll and IMD pathways in response to bacterial challenge is impaired in DENV-infected cells. In addition, Escherichia coli, a gram-negative bacteria species, grew better when co-cultured with DENV-infected cells than with uninfected cells, suggesting a decreased production of AMPs from the IMD pathway in virus-infected cells. Pre-stimulation of the cell line with gram-positive bacteria prior to DENV infection had no effect on DENV titers, while pre-stimulation with gram-negative bacteria resulted in an increase in DENV titers. These results indicate that DENV is capable of actively suppressing immune responses in the cells it infects, a phenomenon that may have important consequences for virus transmission and insect physiology. Infected (dengue virus or heat-inactivated dengue virus) vs. naive cells. 3 replicates each.
Project description:Microarray analysis on days 1, 2 and 7 post-infection with dengue, yellow fever and West Nile virus in Aedes aegypti Rockefeller strain mosquitoes RNA was purified and hybridized with Nimblegen X4 microarray chips using 81-mer probes designed from 18,000 open reading frames (ORF) found in the Ae. aegypti genome, with 2 different probes per ORF
Project description:The ability of many viruses to manipulate the host antiviral immune response often results in complex host-pathogen interactions. In order to study the interaction of dengue virus (DENV) with the Aedes aegypti immune response, we have characterized the DENV infection-responsive transcriptome of the immune-competent A. aegypti cell line Aag2. As in mosquitoes, DENV infection transcriptionally activated the cell line Toll pathway and a variety of cellular physiological systems. Most notably, however, DENV infection down-regulated the expression levels of numerous immune signaling molecules and antimicrobial peptides (AMPs). Functional assays showed that transcriptional induction of AMPs from the Toll and IMD pathways in response to bacterial challenge is impaired in DENV-infected cells. In addition, Escherichia coli, a gram-negative bacteria species, grew better when co-cultured with DENV-infected cells than with uninfected cells, suggesting a decreased production of AMPs from the IMD pathway in virus-infected cells. Pre-stimulation of the cell line with gram-positive bacteria prior to DENV infection had no effect on DENV titers, while pre-stimulation with gram-negative bacteria resulted in an increase in DENV titers. These results indicate that DENV is capable of actively suppressing immune responses in the cells it infects, a phenomenon that may have important consequences for virus transmission and insect physiology.
Project description:Microarray analysis on days 1, 2 and 7 post-infection with dengue, yellow fever and West Nile virus in Aedes aegypti Rockefeller strain mosquitoes RNA was purified and hybridized with Nimblegen X4 microarray chips using 81-mer probes designed from 18,000 open reading frames (ORF) found in the Ae. aegypti genome, with 2 different probes per ORF Nimblegen X4 array format, 81mer probes, RNA samples taken mostly in triplicate, microarray analysis done in triplicate. Thirty seven samples in total. Fold change data with infection/mock on the Series record.
Project description:Wolbachia pipientis is an intracellular symbiotic bacterium found in insects and arthropods. Wolbachia can decrease the vectorial capacity for various pathogens, such as the dengue virus, in Aedes aegypti. The purpose of this study was to determine the effect of Wolbachia (wMel strain) on the vectorial capacity of Ae. aegypti for Dirofilaria immitis. We analyzed gene expression patterns by RNA-seq in addition to the D. immitis infection phenotype in Ae. aegypti infected with and without wMel. Four Ae. aegypti strains, MGYP2.tet, MGYP2, Liverpol (LVP)-Obihiro (OB), and LVP-OB-wMel (OB-wMel) were analyzed for transcriptome comparison in Malpighian tubule at 2 days post infection. The correlation between Wolbachia infection, D. immitis infection phenotype and immune-related genes expression in Ae. aegypti was investigated.
Project description:Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in south America. The virus is transmitted mainly by the mosquito Aedes aegypti that also vectors dengue virus. Considering rather recent rapid spread of the virus and its declaration as a global health emergency by the World Health Organization, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole Ae. aegypti mosquitoes in response to ZIKV infection at 2, 7 and 14 days post-infection using deep sequencing. Results showed a large number of transcripts were altered at each time point following infection, but 18 transcripts were commonly changed at the three time points. The outcomes provide a basic understanding of Ae. aegypti responses to ZIKV and help determining host factors involved in replication or anti-viral response against the virus.
Project description:Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito Aedes aegypti.
Project description:Aedes aegypti mosquitoes infect hundreds of millions of people each year with dangerous viral pathogens including dengue, yellow fever, Zika, and chikungunya. Progress in understanding the biology of this insect, and developing tools to fight it, depends on the availablity of a high-quality genome assembly. Here we use DNA proximity ligaton (Hi-C) and Pacific Biosciences long reads to create AaegL5 - a highly contiguous A. aegypti reference.
Project description:Wolbachia are intracellular maternally inherited bacteria that can spread through insect populations and block virus transmission by mosquitoes, providing an important new dengue control strategy. To better understand the mechanisms of virus inhibition, proteomic quantification of the effects of Wolbachia in mosquito (Aedes aegypti) midguts was performed.