Project description:Death receptor-mediated hepatocyte apoptosis is implicated in a wide range of liver diseases including viral hepatitis, alcoholic hepatitis, ischemia/reperfusion injury, fulminant hepatic failure, cholestatic liver injury and cancer. Deletion of NF-ĸB essential modulator in hepatocytes (NemoΔhepa) causes the spontaneous development of hepatocellular carcinoma preceded by steatohepatitis in mice and thus serves as an excellent model for the progression from chronic hepatitis to liver cancer. In the present study we aimed to dissect the death-receptor mediated pathways that contribute to liver injury in NemoΔhepa mice. Therefore, we generated NemoΔhepa/TRAIL-/- and NemoΔhepa/TNFR1-/- animals and analyzed the progression of liver injury. NemoΔhepa/TRAIL-/- displayed a similar phenotype to NemoΔhepa mice characteristic of high apoptosis, infiltration of immune cells, hepatocyte proliferation and steatohepatitis. These pathophysiological features were significantly ameliorated in NemoΔhepa/TNFR1-/- livers. Hepatocyte apoptosis was increased in NemoΔhepa and NemoΔhepa/TRAIL-/- mice while NemoΔhepa/TNFR1-/- animals showed reduced cell death concomitant with a strong reduction in pJNK levels. Cell cycle parameters were significantly less activated in NemoΔhepa/TNFR1-/- livers. Additionally, markers of liver fibrosis and indicators of tumour progression were significantly decreased in these animals. The present data demonstrate that the death receptor TNFR1 but not TRAIL is important in determining progression of liver injury in hepatocyte-specific Nemo knockout mice. Expression profiling of livers from wild type, NEMO, NEMO-TRIAL, and NEMO-TNFR null mice
Project description:Death receptor-mediated hepatocyte apoptosis is implicated in a wide range of liver diseases including viral hepatitis, alcoholic hepatitis, ischemia/reperfusion injury, fulminant hepatic failure, cholestatic liver injury and cancer. Deletion of NF-ĸB essential modulator in hepatocytes (NemoΔhepa) causes the spontaneous development of hepatocellular carcinoma preceded by steatohepatitis in mice and thus serves as an excellent model for the progression from chronic hepatitis to liver cancer. In the present study we aimed to dissect the death-receptor mediated pathways that contribute to liver injury in NemoΔhepa mice. Therefore, we generated NemoΔhepa/TRAIL-/- and NemoΔhepa/TNFR1-/- animals and analyzed the progression of liver injury. NemoΔhepa/TRAIL-/- displayed a similar phenotype to NemoΔhepa mice characteristic of high apoptosis, infiltration of immune cells, hepatocyte proliferation and steatohepatitis. These pathophysiological features were significantly ameliorated in NemoΔhepa/TNFR1-/- livers. Hepatocyte apoptosis was increased in NemoΔhepa and NemoΔhepa/TRAIL-/- mice while NemoΔhepa/TNFR1-/- animals showed reduced cell death concomitant with a strong reduction in pJNK levels. Cell cycle parameters were significantly less activated in NemoΔhepa/TNFR1-/- livers. Additionally, markers of liver fibrosis and indicators of tumour progression were significantly decreased in these animals. The present data demonstrate that the death receptor TNFR1 but not TRAIL is important in determining progression of liver injury in hepatocyte-specific Nemo knockout mice.
Project description:Chronic liver injury triggers complications such as liver fibrosis and hepatocellular carcinoma (HCC), which are associated with alterations in distinct signaling pathways. Of particular interest is the interaction between mechanisms controlled by IKKγ/NEMO, the regulatory IKK subunit, and Jnk activation for directing cell death and survival. In the present study, we aimed to define the relevance of Jnk in hepatocyte-specific NEMO knockout mice (NEMOΔhepa), a genetic model of chronic inflammatory liver injury. We generated global Jnk1-/-/NEMOΔhepa and Jnk2-/-/NEMOΔhepa mice by crossing NEMOΔhepa mice with Jnk1-/- and Jnk2-/- animals, respectively, and examined the progression of chronic liver disease. Moreover, we investigated the expression of Jnk during acute liver injury, evaluated the role of Jnk1 in bone marrow-derived cells, and analyzed the expression of NEMO and pJnk in human diseased-livers. Deletion of Jnk1 significantly aggravated the progression of liver disease, exacerbating apoptosis, compensatory proliferation and carcinogenesis in NEMOΔhepa mice. Jnk2-/-/NEMOΔhepa showed increased RIP-1 and RIP-3 expression and hepatic inflammation. Jnk1 in hematopoietic cells rather than hepatocytes had an impact on the progression of chronic liver disease in NEMOΔhepa livers. These findings are of clinical relevance since NEMO expression was down-regulated in hepatocytes of patients with HCC whereas NEMO and pJnk were expressed in a large amount of infiltrating cells. While Jnk1 is protective in NEMOΔhepa-depleted hepatocytes, Jnk1 in hematopoietic cells rather than hepatocytes is a crucial driver of hepatic injury. These results elucidate the complex function of Jnk in chronic inflammatory liver disease. Livers from global knockout mice for Jnk1 (Jnk1-/-) and Jnk2 (Jnk2-/- ), and double-knockout mice for Jnk1/NEMO (global Jnk1-/-/NEMOΔhepa) and Jnk2/NEMO (global Jnk2-/-/NEMOΔhepa), were subjected to gene expression profiling.
Project description:Background & Aims: Inflammation in chronic liver diseases induces oxidative stress and thus may contribute to progression of liver injury, fibrosis, and carcinogenesis. The KEAP1/NRF2 axis is a major regulator of cellular redox balance. In the present study, we investigated whether the KEAP1/NRF2 system is involved in liver disease progression in human and mice. Methods: The clinical relevance of oxidative stress was investigated in a well-characterized cohort of NAFLD patients (n=63) by liver RNA sequencing and correlated with histological and clinical parameters. For functional analysis hepatocyte-specific NEMO knock-out (NEMO∆hepa) mice were crossed with hepatocyte-specific KEAP1 knock-out (KEAP1∆hepa) mice. Results: Immunohistochemical analysis of human liver sections showed increased oxidative stress and high NRF2 expression in patients with chronic liver disease. RNA sequencing of liver samples in a human pediatric NAFLD cohort revealed a significant increase of NRF2 activation correlating with the grade of inflammation, but not with the grade of steatosis, which could be confirmed in a second adult NASH cohort. In mice, microarray analysis revealed that KEAP1 deletion induces NRF2 target genes involved in glutathione metabolism and xenobiotic stress (e.g., Nqo1). Furthermore, deficiency of one of the most important antioxidants, glutathione (GSH), in NEMO∆hepa livers was rescued after deleting KEAP1. As a consequence, NEMO∆hepa/KEAP1∆hepa livers showed reduced apoptosis compared to NEMO∆hepa livers as well as a dramatic downregulation of genes involved in cell cycle regulation and DNA replication. Consequently, NEMO∆hepa/KEAP1∆hepa compared to NEMOΔhepa livers displayed decreased fibrogenesis, lower tumor incidence, reduced tumor number, and decreased tumor size. Conclusions: NRF2 activation in NASH patients correlates with the grade of inflammation, but not steatosis. Functional analysis in mice demonstrated that NRF2 activation in chronic liver disease is protective by ameliorating fibrogenesis, initiation and progression of hepatocellular carcinogenesis.
Project description:Chronic liver injury triggers complications such as liver fibrosis and hepatocellular carcinoma (HCC), which are associated with alterations in distinct signaling pathways. Of particular interest is the interaction between mechanisms controlled by IKKγ/NEMO, the regulatory IKK subunit, and Jnk activation for directing cell death and survival. In the present study, we aimed to define the relevance of Jnk in hepatocyte-specific NEMO knockout mice (NEMOΔhepa), a genetic model of chronic inflammatory liver injury. We generated global Jnk1-/-/NEMOΔhepa and Jnk2-/-/NEMOΔhepa mice by crossing NEMOΔhepa mice with Jnk1-/- and Jnk2-/- animals, respectively, and examined the progression of chronic liver disease. Moreover, we investigated the expression of Jnk during acute liver injury, evaluated the role of Jnk1 in bone marrow-derived cells, and analyzed the expression of NEMO and pJnk in human diseased-livers. Deletion of Jnk1 significantly aggravated the progression of liver disease, exacerbating apoptosis, compensatory proliferation and carcinogenesis in NEMOΔhepa mice. Jnk2-/-/NEMOΔhepa showed increased RIP-1 and RIP-3 expression and hepatic inflammation. Jnk1 in hematopoietic cells rather than hepatocytes had an impact on the progression of chronic liver disease in NEMOΔhepa livers. These findings are of clinical relevance since NEMO expression was down-regulated in hepatocytes of patients with HCC whereas NEMO and pJnk were expressed in a large amount of infiltrating cells. While Jnk1 is protective in NEMOΔhepa-depleted hepatocytes, Jnk1 in hematopoietic cells rather than hepatocytes is a crucial driver of hepatic injury. These results elucidate the complex function of Jnk in chronic inflammatory liver disease.
Project description:Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2/Abcb4-knockout (Mdr2-KO) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation (MeDIP) followed by hybridization with Agilent CpG Islands (CGIs) microarrays we found specific CGIs in 76 genes which were hypermethylated in the Mdr2-KO liver compared to age-matched controls. Methylation of thirty among these genes was highly specific to the studied HCC model. We revealed that in most tested cases, the observed hypermethylation resulted from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2-KO liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. This decrease could result from a less efficient age-dependent demethylation of specific CpG sites in the liver of Mdr2-KO mutants, as described above. Expression of some tested hypermethylated genes was increased in Mdr2-KO livers compared to controls (28%), others were either similarly expressed (44%), or not expressed in the liver (28%). Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2-KO compared to control livers affected either hepatocyte, or non-hepatocyte, or both fractions. There was only episodic correlation between changes of gene methylation and expression in cell fractions. Conclusion: Chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as markers of an increased regenerative activity and of a precancerous microenvironment in the chronically inflamed liver. Two-condition experiment, Mdr2-KO vs Mdr2-/+ liver tissue from 12m-old male FVB strain mice. Biological replicates: 3 control replicates, 3 knockout replicates.
Project description:Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2/Abcb4-knockout (Mdr2-KO) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation (MeDIP) followed by hybridization with Agilent CpG Islands (CGIs) microarrays we found specific CGIs in 76 genes which were hypermethylated in the Mdr2-KO liver compared to age-matched controls. Methylation of thirty among these genes was highly specific to the studied HCC model. We revealed that in most tested cases, the observed hypermethylation resulted from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2-KO liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. This decrease could result from a less efficient age-dependent demethylation of specific CpG sites in the liver of Mdr2-KO mutants, as described above. Expression of some tested hypermethylated genes was increased in Mdr2-KO livers compared to controls (28%), others were either similarly expressed (44%), or not expressed in the liver (28%). Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2-KO compared to control livers affected either hepatocyte, or non-hepatocyte, or both fractions. There was only episodic correlation between changes of gene methylation and expression in cell fractions. Conclusion: Chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as markers of an increased regenerative activity and of a precancerous microenvironment in the chronically inflamed liver.
Project description:NEMO-IEC KO mice spontaneously develop chronic colitis characterized by inflammatory gene expression. We characterized the role of RIPK1 auto-phosphorylation in the upregulation of inlflammatory genes in these mice. We used microarray to study the effect of a RIPK1S166A mutation on the gene expression profile in NEMO IEC-KO mice and detect effects on specific inflammatory genes.
Project description:Inflammatory responses, apoptosis, and oxidative stress, are key factors that contribute to hepatic ischemia/reperfusion (I/R) injury, which may lead to the failure of liver surgeries, such as hepatectomy and liver transplantation. The N6-methyladenosine (m6A) modification has been implicated in multiple biological processes, and its specific role and mechanism in hepatic I/R injury require further investigation. We found that METTL3 may be involved in regulating this process. Therefore, we constructed an ischemia-reperfusion model with Hepatocyte-specific METTL3 knockdown (HKD) mice, and performed RNA- sequencing analysis with wild-type mice as controls.