Project description:The screening of a cDNA derived expression library of Campylobacter jejuni NCTC 11168 expressed in E. coli using a fusion construct and specific HaloTag interaction to a modified surface is shown. 1536 different clones were screened including positive (hisJ, cjaA, peb1a) and negative (argC, pyrC, gapA) reference proteins. The goal of the screening was to identify potential novel immunogenic proteins from C. jejuni by selecting clones showing a high signal intensity in comparison to the known antigens used as positive markers. Afterwards, the most promising clones were sequenced to identify the gene and corresponding protein, and these proteins were then investigated further. Consequently, 22 novel immunogenic proteins could be identified.
Project description:Campylobacter jejuni (C. jejuni) protein microarrays were used to identify immunogenic C. jejuni proteins that may be useful in the development of biomarkers, diagnostic assays, or subunit vaccines for humans or livestock. A native protein microarray with over 1400 individually purified GST-tagged C. jejuni proteins (86 % of the proteome), was constructed and screened for antibody titers present in test sera. The protein arrays were screened with antisera from rabbits inoculated with whole C. jejuni or various serotypes of E. coli or Salmonella, with antisera from mice infected with C. jejuni, and sera from healthy humans. Dual detection of GST signals was incorporated as a way of normalizing the variation of protein concentrations contributing to the antibody staining intensities.
Project description:The screening of a cDNA derived expression library of Campylobacter jejuni NCTC 11168 expressed in E. coli using a fusion construct and specific HaloTag interaction to a modified surface is shown. 1536 different clones were screened including positive (hisJ, cjaA, peb1a) and negative (argC, pyrC, gapA) reference proteins. The goal of the screening was to identify potential novel immunogenic proteins from C. jejuni by selecting clones showing a high signal intensity in comparison to the known antigens used as positive markers. Afterwards, the most promising clones were sequenced to identify the gene and corresponding protein, and these proteins were then investigated further. Consequently, 22 novel immunogenic proteins could be identified. In total, 1536 (4 x 384) different lysates were spotted on different microarray slides. Each slide contained 3600 distinct spots, separated into two compartments of 1800 spots each. Each compartment comprised quadruplicate replicates of each sample lysate with controls being analysed with more replicates. As controls we used: hisJ, cjaA and peb1 (3 x 40 replicates) as positive reference proteins, as they have been described as immunogenic before; argC and pyrC (2 x 40 replicates) as negative reference proteins; two sets of E. coli cell lysates without fusion proteins expressed, namely Acella electrocompetent cells (40 replicates) and KRX (32 replicates); and a buffer control (24 replicates). Therefore, each set of replicate slides contained 376 different samples and 8 controls. Each screening was performed with three replicate slides. Consequently, a total number of 12 slides were screened (4 sets of samples x 3 replicates each). For identification, rabbit polyclonal antibody to C. jejuni (Acris AP24002PU-N) as primary and goat polyclonal to rabbit IgG conjugated with ChromeoTM-546 (Abcam ab60317) as secondary antibody were used. The top compartment was incubated first with primary antibody, while the bottom compartment was incubated with PBS at the same time. Afterwards, both compartments were incubated with secondary antibody.
Project description:Transcriptional regulation mediates adaptation of pathogens to environmental stimuli and is important for host colonisation. The Campylobacter jejuni genome sequence reveals a surprisingly small set of regulators, mostly of unknown function, suggesting an intricate regulatory network. Interestingly, C. jejuni lacks the homologues of ubiquitous regulators involved in stress response found in many other Gram-negative bacteria. Nonetheless, cj1000 is predicted to code for the sole LysR-type regulator in the C. jejuni genome, and thus may be involved in major adaptation pathways. A cj1000 mutant strain was constructed and found to be attenuated in its ability to colonise 1-day old chicks. Complementation of cj1000 mutation restored the colonisation ability to that of wild type levels. The mutant strain was also outcompeted in a competitive colonisation assay of the piglet intestine. High resolution oxygraphy was carried out for the first time on C. jejuni and revealed a role for Cj1000 in controlling O2 consumption. Furthermore, microarray analysis of the cj1000 mutant revealed both direct and indirect regulatory targets, including genes involved in energy metabolism and oxidative stress defences. These results highlight the importance of Cj1000 regulation in host colonisation and in major physiological pathways.
Project description:While growing in the human intestine, C. jejuni grows within the mucus layer. The largest constituents of this layer are the large mucin glycoproteins. A transcriptomic profile of C. jejuni NCTC11168 growing in a mucin-containing minimal medium seeks to describe the effect of the presence of mucin proteins on the transcriptome of C. jejuni.
Project description:Bacteria have evolved different mechanisms to catabolize carbon sources from a mixture of nutrients. They first consume their preferred carbon source, before others are used. Regulatory mechanisms adapt the metabolism accordingly to maximize growth and to outcompete other organisms. The human pathogen Campylobacter jejuni is an asaccharolytic Gram-negative bacterium that catabolizes amino acids and organic acids for growth. It prefers serine and aspartate as carbon sources, however it lacks all regulators known to be involved in regulating carbon source utilization in other organisms. In which manner C. jejuni adapts its metabolism towards the presence or absence of preferred carbon sources is unknown. In this study, we show with transcriptomic analysis and enzyme assays how C. jejuni adapts its metabolism in response to its preferred carbon source serine. In the presence of serine as well as lactate and pyruvate C. jejuni represses the utilization of other carbon sources, by repressing the expression of a number of central metabolic enzymes. The regulatory proteins RacR, Cj1000 and CsrA play a role in the regulation of these metabolic enzymes. This metabolism dependent transcriptional repression correlates with an accumulation of intracellular succinate. Hence, we propose a demand-based catabolite repression mechanism in C. jejuni, which depends on the intracellular succinate level.
Project description:DksA is well-known for its regulatory role in the transcription of ribosomal RNA and genes involved in amino acid synthesis in many bacteria. DksA is also reported to control expression of virulence genes in pathogenic bacteria. Here, we elucidated the roles of the DksA-like protein (CJJ81176_0160, Cj0125c) in the pathogenesis of Campylobacter jejuni. Like in other bacteria, transcription of stable RNA was repressed by DksA under stressful conditions in C. jejuni. Transcriptomic and proteomic analyses of C. jejuni 81-176 and its isogenic dksA mutant showed differential expression of many genes involved in iron-related metabolism, flagellar synthesis and amino acid metabolism. Also the dksA mutant of C. jejuni demonstrated a decreased ability to invade into intestinal cells and to induce release of interleukin-8 from intestinal cells. These results suggest the DksA-like protein plays an important regulatory role in the physiology and virulence of C. jejuni. Keywords: dksA mutation of Campylobacter jejuni