Project description:Mice lacking the developmental axon guidance molecule EphA4 have previously been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury, a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated or otherwise altered expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wild-type spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage / microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages / activated microglia in injured EphA4 knockout compared to wild-type spinal cords at two, four or fourteen days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages / activated microglia was observed in EphA4 knockout spinal cords at four days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury. Comparison was made between gene expression in wild-type and knockout samples both before and after injury. 3 replicates per group.
Project description:Mice lacking the developmental axon guidance molecule EphA4 have previously been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury, a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated or otherwise altered expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wild-type spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage / microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages / activated microglia in injured EphA4 knockout compared to wild-type spinal cords at two, four or fourteen days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages / activated microglia was observed in EphA4 knockout spinal cords at four days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury.
Project description:We profiled spinal cord tissue at the site of a moderate contusion injury at the level of the thoracic spinal cord We examined several timepoints following injury, including sham and days 1,3 and 7 following injury and compared differential expression of genes within a genotype and across genotypes (trkB.T1KO/trkB.T1WT) at each timepoint.
Project description:We profiled spinal cord tissue at the site of a moderate contusion injury at the level of the thoracic spinal cord We examined several timepoints following injury, including sham and days 1,3 and 7 following injury and compared differential expression of genes within a genotype and across genotypes (trkB.T1KO/trkB.T1WT) at each timepoint. Tissue was profiled at baseline (sham) condition and then 1, 3 and 7 days after thoracic moderate contusion injury
Project description:Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or disease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function. Analysis of the areas directly (spinal cord) and indirectly (raphe and sensorimotor cortex) affected by injury will help understanding mechanisms of SCI. Hypothesis: Areas of the brain primarily affected by spinal cord injury are the Raphe and the Sensorimotor cortex thus gene expression profiling these two areas might contribute understanding the mechanisms of spinal cord injury. Specific Aim: The project aims at finding significantly altered genes in the Raphe and Sensorimotor cortex following an induced moderate spinal cord injury in T9.
Project description:Adult zebrafish have the ability to recover from spinal cord injury and exhibit re-growth of descending axons from the brainstem to the spinal cord. We performed gene expression analysis using microarray to find damage-induced genes after spinal cord injury, which shows that Sox11b mRNA is up-regulated at 11 days after injury. However, the functional relevance of Sox11b for regeneration is not known. Here, we report that the up-regulation of Sox11b mRNA after spinal cord injury is mainly localized in ependymal cells lining the central canal and in newly differentiating neuronal precursors or immature neurons. Using an in vivo morpholino-based gene knockout approach, we demonstrate that Sox11b is essential for locomotor recovery after spinal cord injury. In the injured spinal cord, expression of the neural stem cell associated gene, Nestin, and the proneural gene Ascl1a (Mash1a), which are involved in the self-renewal and cell fate specification of endogenous neural stem cells, respectively, is regulated by Sox11b. Our data indicate that Sox11b promotes neuronal determination of endogenous stem cells and regenerative neurogenesis after spinal cord injury in the adult zebrafish. Enhancing Sox11b expression to promote proliferation and neurogenic determination of endogenous neural stem cells after injury may be a promising strategy in restorative therapy after spinal cord injury in mammals. Spinal cord injury or control sham injury was performed on adult zebrafish. After 4, 12, or 264 hrs, a 5 mm segment of spinal cord was dissected and processed (as a pool from 5 animals) in three replicate groups for each time point and treatment.