Project description:Ecotoxicological tests may be biased by the use of laboratory strains that usually contain very limited genetic diversity. It is therefore essential to study how genetic variation influences stress tolerance relevant for toxicity outcomes. To that end we studied sensitivity to cadmium in two distinct genotypes of the parthogenetic soil ecotoxicological model organism Folsomia candida. Clonal lines of both genotypes (TO1 and TO2) showed divergent fitness responses to cadmium exposure; TO2 reproduction was 20% less affected by cadmium. Statistical analyses revealed significant differences between the cadmium-affected transcriptomes; i) the number of genes affected by cadmium in TO2 was only minor (~22%) compared to TO1; ii) 97 genes showed a genotype × cadmium interaction and their response to cadmium showed globally larger fold changes in TO1 when compared to TO2; iii) the interaction genes showed a concerted manner of expression in TO1 while a less coordinated pattern was observed in TO2. We conclude that (1) there is genetic variation in parthenogenetic populations of F. candida, and (2) this variation affects life-history and molecular endpoints relative to cadmium toxicity. This sheds new light on the sources of biological variability in test results, even when the test organisms are thought to be genetically homogeneous because of their parthenogenetic reproduction.
Project description:Ecotoxicological tests may be biased by the use of laboratory strains that usually contain very limited genetic diversity. It is therefore essential to study how genetic variation influences stress tolerance relevant for toxicity outcomes. To that end we studied sensitivity to cadmium in two distinct genotypes of the parthogenetic soil ecotoxicological model organism Folsomia candida. Clonal lines of both genotypes (TO1 and TO2) showed divergent fitness responses to cadmium exposure; TO2 reproduction was 20% less affected by cadmium. Statistical analyses revealed significant differences between the cadmium-affected transcriptomes; i) the number of genes affected by cadmium in TO2 was only minor (~22%) compared to TO1; ii) 97 genes showed a genotype M-CM-^W cadmium interaction and their response to cadmium showed globally larger fold changes in TO1 when compared to TO2; iii) the interaction genes showed a concerted manner of expression in TO1 while a less coordinated pattern was observed in TO2. We conclude that (1) there is genetic variation in parthenogenetic populations of F. candida, and (2) this variation affects life-history and molecular endpoints relative to cadmium toxicity. This sheds new light on the sources of biological variability in test results, even when the test organisms are thought to be genetically homogeneous because of their parthenogenetic reproduction. Gene expression was measured in two different clones (TO1 and TO2) of the springtail Folsomia candida, after exposure of 2 days to soil containing cadmium (Cd+) and non-spiked (Cd-) soil. A 2 x 2 factorial analysis was performed, to examine the effect of clone (TO1, TO2), of treatment (Cd+, Cd-), and the clone x treatment interaction.
Project description:Increasing concern about pollution of our environment calls for advanced and rapid methods to estimate ecological toxicity. The use of gene expression microarrays in environmental studies can potentially meet this challenge. We present a novel method to examine soil toxicity. We exposed the collembolan Folsomia candida to soil containing an ecologically relevant cadmium concentration, and found a cumulative total of 1586 differentially expressed transcripts across three exposure durations, including transcripts involved in stress response, detoxification, and hypoxia. Additional enrichment analysis of gene ontology (GO) terms revealed that antibiotic biosynthesis is important at all time points examined. Interestingly, genes involved in the "penicillin and cephalosporin biosynthesis pathway" have never been identified in animals before, but are expressed in F. candida’s tissue. The synthesis of antibiotics can possibly be a response to increased cadmium-induced susceptibility to invading pathogens, which might be caused by repression of genes involved in the immune-system (C-type lectins and Toll receptor). This study presents a first global view on the environmental stress response of an arthropod species exposed to contaminated soil,and provides a mechanistic basis for the development of a gene expression soil quality test. Keywords: cadmium, soil, Collembola, environmental genomics
Project description:Polycyclic aromatic hydrocarbons are common pollutants in soil, have negative effects on soil ecosystems, and are potentially carcinogenic. The Springtail (Collembola) Folsomia candida is often used as an indicator species for soil toxicity. Here we report a toxicogenomic study that translates the ecological effects of the polycyclic aromatic hydrocarbon phenanthrene in soil to the early transcriptomic responses in Folsomia candida. Microarrays were used to examine two different exposure concentrations of phenanthrene, namely the EC10 (24.95 mg kg-1 soil) and EC50 (45.80 mg kg-1 soil) on reproduction of this springtail, which evoked 405 and 251 differentially expressed transcripts, respectively. Fifty transcripts were differential in response to either concentration. Many transcripts encoding xenobiotic detoxification and biotransformation enzymes (phases I, II, and III) were upregulated in response to either concentration. Furthermore, indications of general and oxidative stress were found in response to phenanthrene. Chitin metabolism appeared to be disrupted particularly at the low concentration, and protein translation appeared suppressed at the high concentration of phenanthrene; most likely in order to reallocate energy budgets for the detoxification process. Finally, an immune response was evoked especially in response to the high effect concentration, which was also described in a previous transcriptomic study using the same effect concentration (EC50) of cadmium. Our study provides new insights in the molecular mode of action of the important polluting class of polycyclic aromatic hydrocarbons in soil animals. Furthermore, we present a fast, sensitive, and specific soil toxicity test which enhances traditional tests and may help to improve current environmental risk assessments and monitoring of potentially polluted sites.
Project description:The present invention relates to methods for determining soil quality, and especially soil pollution, using the invertebrate soil organism Folsomia candida also designated as springtail. Specifically, the present invention relates to a method for determining soil quality comprising: contacting Folsomia Candida with a soil sample to be analysed during a time period of 1 to 5 days; isolating said soil contacted Folsomia Candida; extracting RNA from said isolated soil contacted Folsomia Candida; determing a gene expression profile based on said extracted RNA using microarray technology; comparing said gene expression profile with a reference gene expression profile; and determing soil quality based expression level differences between said gene expression profile and said control expression profile.
Project description:Polycyclic aromatic hydrocarbons are common pollutants in soil, have negative effects on soil ecosystems, and are potentially carcinogenic. The Springtail (Collembola) Folsomia candida is often used as an indicator species for soil toxicity. Here we report a toxicogenomic study that translates the ecological effects of the polycyclic aromatic hydrocarbon phenanthrene in soil to the early transcriptomic responses in Folsomia candida. Microarrays were used to examine two different exposure concentrations of phenanthrene, namely the EC10 (24.95 mg kg-1 soil) and EC50 (45.80 mg kg-1 soil) on reproduction of this springtail, which evoked 405 and 251 differentially expressed transcripts, respectively. Fifty transcripts were differential in response to either concentration. Many transcripts encoding xenobiotic detoxification and biotransformation enzymes (phases I, II, and III) were upregulated in response to either concentration. Furthermore, indications of general and oxidative stress were found in response to phenanthrene. Chitin metabolism appeared to be disrupted particularly at the low concentration, and protein translation appeared suppressed at the high concentration of phenanthrene; most likely in order to reallocate energy budgets for the detoxification process. Finally, an immune response was evoked especially in response to the high effect concentration, which was also described in a previous transcriptomic study using the same effect concentration (EC50) of cadmium. Our study provides new insights in the molecular mode of action of the important polluting class of polycyclic aromatic hydrocarbons in soil animals. Furthermore, we present a fast, sensitive, and specific soil toxicity test which enhances traditional tests and may help to improve current environmental risk assessments and monitoring of potentially polluted sites. Folsomia candida was exposed to phenanthrene spiked soil or untreated (reference/control) soil for 2 days. Two different concentrations of phenanthrene were used, 24.95 and 45.80 mg/kg soil which represent the EC10 and EC50 on reproduction, respectively. For each concentration treatment 4 biological replicates were used, replicate samples consisted of total RNA extracted from ~30 animals exposed in the same jar to either reference or phenanthrene spiked soil. Phenanthrene treated samples were always hybridized to reference samples in an evenly distributed dye-swap manner, which resulted in total in 8 hybridizations of 16 samples.
Project description:Genetic and molecular evidence to support the hypothesis that fungal secondary metabolites play a significant role in protecting the fungi against fungivory is scarce. We investigated the impact of fungal secondary metabolites on transcript regulation of stress related expressed sequence tags (ESTs) of the Collembola Folsomia candida feeding on mixed vs. single diets. Aspergillus nidulans wildtype (WT; Ascomycota) able to produce secondary metabolites including sterigmatocystin (ST) and a knockout mutant with reduced secondary metabolism (A. nidulans ΔLaeA) were combined with the high quality fungus Cladosporium cladosporioides as mixed diets or offered as single diets. We hypothesized that (i) A. nidulans WT triggers more genes associated with stress responses compared to the A. nidulans ΔlaeA strain with suppressed secondary metabolism, (ii) C. cladosporioides causes significantly different transcript regulation than the A. nidulans strains ΔlaeA and WT, and (iii) mixed diets will cause significantly different transcript expression levels than single diets. All three hypotheses are generally supported despite the fact that many functions of the affected ESTs are unknown. The results bring molecular evidence for the existence of a link between fungal secondary metabolites and responses in springtails supporting the hypothesis that fungal secondary metabolites act as a shield against fungivory.
Project description:In a recent study, we showed that the springtail Folsomia candida was quite sensitive the neonicotinoid insecticides imidacloprid and thiacloprid. This study aimed at determining the toxicity of both compounds to F. candida following exposure over three generations, in natural LUFA 2.2 standard soil. In the first generation, imidacloprid was more toxic than thiacloprid, with LC50s of 0.44 and 9.0 mg/kg dry soil, respectively and EC50s of 0.29 and 1.5 mg/kg dry soil, respectively. The higher LC50/EC50 ratio suggests that thiacloprid has more effects on reproduction, while imidacloprid shows lethal toxicity to the springtails. In the multigeneration tests, using soil spiked at the start of the first generation exposures, imidacloprid had a consistent effect on survival and reproduction in all three generations, with LC50s and EC50s of 0.21-0.44 and 0.12-0.29 mg/kg dry soil, respectively, while thiacloprid-exposed animals showed clear recovery in the second and third generations (LC50 and EC50 > 3.33 mg/kg dry soil). The latter finding is in agreement with the persistence of imidacloprid and the fast degradation of thiacloprid in the test soil.