Project description:We used laser-capture microdissection (LCM) to isolate specific cells from the Medicago truncatula nodule meristem (M), the distal infection (DIZ), the proximal infection zone (PIZ), infected cells (IC) and uninfected cells (UIC) from the fixation zone. Based on Medicago GeneChips, we identified the cell- and tissue-specific programm of gene expression in Medicago truncatula root nodules.
Project description:We have used deep sequencing of small RNAs from nodules and root apexes of the model legume Medicago truncatula, to identify 113 novel candidate miRNAs. These miRNAs (legume or Mt-specific) are encoded by 278 putative hairpin precursors in the M. truncatula genome. Several miRNAs are differentially expressed in nodules and root tips and large variety of targets could be predicted for these genes. Specific miRNA isoforms showed contrasting expression patterns in these tissues Keywords: Transcriptome analysis
Project description:Drought is one of the major environmental factors limiting biomass and seed yield production in agriculture. In this research we focused on plants from Fabaceae family, which have a unique ability for establishment of symbiosis with nitrogen-fixing bacteria, and are relatively susceptible to water limitation. We present the changes in nitrogenase activity and global gene expression occurring in Medicago truncatula and Lotus japonicus root nodules during water deficit. Our results prove a decrease in the efficiency of nitrogen fixation as well as extensive changes in plant and bacterial transcriptomes shortly after watering cessation. We show for the first time that not only symbiotic plant component, but also Sinorhizobium meliloti and Mesorhizobium loti bacteria residing in the root nodules of M. truncatula and L. japonicus, respectively, adjust their gene expression in response to water shortage. Although our results demonstrate that both M. truncatula and L. japonicus root nodules are susceptible to water deprivation, they indicate significant differences in plant and bacterial response to drought between tested species, which may be related to various type of root nodules formed by these species.
Project description:Root nodules of the medicago truncatula-sinorhizobium meliloti plant-bacterail symbiotic model system were hand sectioned followed by LCMS. Sections were made to separate different developmental zones along the nodules longitudinal axis.
Project description:We have used deep sequencing of small RNAs from nodules and root apexes of the model legume Medicago truncatula, to identify 113 novel candidate miRNAs. These miRNAs (legume or Mt-specific) are encoded by 278 putative hairpin precursors in the M. truncatula genome. Several miRNAs are differentially expressed in nodules and root tips and large variety of targets could be predicted for these genes. Specific miRNA isoforms showed contrasting expression patterns in these tissues Keywords: Transcriptome analysis 3 samples examined: nodules, root tips, and root tips + NaCl
Project description:We used laser-capture microdissection (LCM) to isolate specific cells from the Medicago truncatula nodule meristem (M), the distal infection (DIZ), the proximal infection zone (PIZ), infected cells (IC) and uninfected cells (UIC) from the fixation zone. Based on Medicago GeneChips, we identified the cell- and tissue-specific programm of gene expression in Medicago truncatula root nodules. Nodules were harvested three weeks after inoculation of Medicago truncatula (genotype Jemalong A17) plants with Sinorhizobium meliloti strain 2011. Nodules were fixed in Farmer's fixative and subsequently embedded in paraffin. 8 M-BM-5m de-paraffined sections were used to capture cells from the nodule meristem, distal infection zone, proximal infection zone, infected cells and uninfected cells from the fixation zone, using an Arcturus Pixcell II laser capture microscope. 3 biological replicates were used for each cell-/tissue type. After RNA extraction, the RNA was amplified and used for Medicago Gene Chip hybridization.
Project description:Leaf explants of the superembryogenic Medicago truncatula line 2HA were treated with auxin (1-naphthaleneacetic acid) for one week to induce the formation of roots (Imin et al J Exp Bot 58:439-451). Gene expression in the leaves and the NAA treated tissue cultures was compared to identify transcripts expressed during the commitment to root formation in tissue culture. We have used the Affymetrix Medicago Genome Array GeneChip to compared gene expression in Medicago truncatula leaves and leaf explants that have been cultured for one week on NAA, to identify genes expressed during the commitment to root formation in tissue culture. Keywords: Cell type comparison
Project description:To investigate the gene expression levels of Medicago truncatula roots after beneficial fungi Gongronella sp. w5 inoculated.Gongronella sp. w5 promoted M. truncatula growth and caused the accumulation of sucrose in M. truncatula root tissue at 16 day-post-inoculation (dpi) without invading into the root cells. The transport of photosynthetic product sucrose to the rhizosphere by M. truncatula root cells was accelerated by upregulating the SWEET gene.
Project description:The bacterium, Sinorhizobium meliloti, interacts symbiotically with leguminous plants such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Medicago nodules are organized in structurally distinct tissue zones, representing different stages of bacterial and plant differentiation. We used laser-capture microdissection (LCM) to analyze bacterial and plant gene expression in four root nodule regions. In parallel, we analyzed gene expression in nodules formed by wild type bacteria on six plant mutants with nitrogen fixation deficiencies (dnf). We found that bacteroid metabolism is drastically remodeled during bacteroid differentiation. Many processes required for bacterial growth are down-regulated in the nitrogen fixation zone. The overall transcriptional changes are similar to those occurring during nutrient limitation by the stringent response. We also observed differential expression of bacterial genes involved in nitrogen fixation, cell envelope homeostasis, cell division, stress response and polyamine biosynthesis at distinct stages of nodule development. In M. truncatula we observed the differential regulation of several host processes that may trigger bacteroid differentiation and control bacterial infection. We analyzed plant and bacterial gene expression simultaneously, which allowed us to correlate processes in both organisms.
Project description:Nitrogen assimilation in plants is a tightly regulated process that integrates developmental and environmental signals. The legume-rhizobial symbiosis results in the formation of a specialized organ called root nodule, where the rhizobia fixes atmospheric nitrogen into ammonia. Ammonia is assimilated by the plant enzyme glutamine synthetase, which is specifically inhibited by PPT. The expression of key genes related to the regulation of root nodule metabolism will likely be affected by glutamine synthetase inhibition. We used microarrays to detail the global programme of gene expression in response to Glutamine synthetase inhibition in root nodules and identified genes differentially expressed over a time course. Medicago truncatula nodulated plants (20 days post inoculation) were treated with 0.25 mM of PPT. Root nodules were harvested at 4, 8 and 24 hours after PPT application. As a control, root nodules collected just before PPT application were used (PPT 0h). Three biological replicates consisting of pools of root nodules harvested from five distinct plants were used for RNA extraction and hybridization on Affymetrix GeneChips.