Project description:we analyzed the expression level change of transcription factors in adipose derived stem cells during osteogenic differentiation and found a candidate target gene, Sox11. We defined that Sox11 suppresses osteogenic differentiation through overexpression and knock down of Sox11. total RNA obtained from adipose derived stem cells subjected to 1,3,6,10 or 14 days in osteogenic differentiation compared to undifferentiated control adipose derived stem cells.
Project description:we analyzed the expression level change of transcription factors in adipose derived stem cells during osteogenic differentiation and found a candidate target gene, Sox11. We defined that Sox11 suppresses osteogenic differentiation through overexpression and knock down of Sox11.
Project description:Adipose tissue harbours a significant number of multipotent adult stem cells of mesenchymal origin known as adipose-derived stem cells (ADSCs). Broad differentiation potential and convenient accessibility of ADSCs make them an attractive source of adult mesenchymal stem cell for regenerative medicine and cell developmental plasticity research. Genome-wide microarray expression profiling was performed to identify genes deregulated during osteogenic differentiation of ADSCs to evaluate developmental plasticity of these cells. Dynamics of epigenetic modifications were analyzed in parallel and associated with the gene expression profile. Gene expression profile was analyzed in adipose-derived stem cells (ADSCs) differentiated into osteogenic lineage from 3 donors and compared to undifferentiated cells from the same donors.
Project description:In order to investigate, at the mRNA level, the signaling pathways through which triiodothyronine (T3) affects osteoblast function, human mesenchymal stem cells derived from adipose tissue were subjected to a pre-established osteoinduction protocol, resulting in osteoblast-like cells, which were cultured with or without T3. RNA-Seq was performed using Illumina platform, and differential gene expression was assessed with DESeq2. Among differentially expressed genes, enrichment analysis was performed for biological processes against the Gene Ontology Consortium database, using both ClusterProfiler R package and STRING.
Project description:This SuperSeries is composed of the following subset Series: GSE25068: PcG/TrxG profiling of differentially aged adipose-derived mesenchymal stem cells GSE25069: Whole-genome microarray of long-term cultured adipose derived mesenchymal stem cells from differentially-aged mice GSE25679: microRNA profiling of mesenchymal stem cells from adipose tissue of differentially aged mice Refer to individual Series
Project description:Adipose tissue harbours a significant number of multipotent adult stem cells of mesenchymal origin known as adipose-derived stem cells (ADSCs). Broad differentiation potential and convenient accessibility of ADSCs make them an attractive source of adult mesenchymal stem cell for regenerative medicine and cell developmental plasticity research. Genome-wide microarray expression profiling was performed to identify genes deregulated during osteogenic differentiation of ADSCs to evaluate developmental plasticity of these cells. Dynamics of epigenetic modifications were analyzed in parallel and associated with the gene expression profile.
Project description:We surveyed DNA methylation profiles of all human RefSeq promoters in relation to gene expression and differentiation in adipose tissue, bone marrow and muscle mesenchymal progenitors, as well as in bone marrow-derived hematopoietic progenitors. We unravel strongly overlapping DNA methylation profiles between adipose stem cells (ASCs), bone marrow mesenchymal stem cells (BMMSCs) and muscle progenitor cells (MPCs), while hematopoietic progenitor cells (HPCs) are more epigenetically distant from MSCs seen as a whole. Differentiation resolves a fraction of methylation patterns common to MSCs, generating epigenetic divergence.