Project description:Pseudomonas aeruginosa undergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using nitrate (NO3-) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis is crucial to the development of effective treatments against P. aeruginosa biofilm infection. Anaerobic growth of PAO1 reached higher cell density in the presence of vitamin B12, an essential coenzyme of class II ribonucleotide reductase. In addition, cell morphology returned to a normal rod shape. These results suggest that vitamin B12, the production of which was suppressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic growth of P. aeruginosa with normal cell division. We used microarray to elucidate the global gene expression profiles underlying vitamin B12-induced changes in bacterial cell shape and growth-associated properties. Gene expression profiles of PAO1 grown in LBN (LB+NO3-) or LBN supplemented with 1 microM vitamin B12 are compared.
Project description:Pseudomonas aeruginosa undergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using nitrate (NO3-) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis is crucial to the development of effective treatments against P. aeruginosa biofilm infection. Anaerobic growth of PAO1 reached higher cell density in the presence of vitamin B12, an essential coenzyme of class II ribonucleotide reductase. In addition, cell morphology returned to a normal rod shape. These results suggest that vitamin B12, the production of which was suppressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic growth of P. aeruginosa with normal cell division. We used microarray to elucidate the global gene expression profiles underlying vitamin B12-induced changes in bacterial cell shape and growth-associated properties.
Project description:The anaerobic metabolism of the opportunistic pathogen Pseudomonas aeruginosa is important for growth and survival during persistent infections. The two Fnr-type transcription factors Anr and Dnr regulate different parts of the underlying network. Both are proposed to bind to a non-distinguishable DNA sequence named Anr box. The aim of this study was the identification of genes induced under anaerobic conditions in the P. aeruginosa wild type and identification of genes under control of the Anr or Dnr regulators. We performed three comparisons to identify genes induced under anaerobic denitrifying conditions in the P. aeruginosa wild type strain and genes which are under control of the Anr or Dnr regulators under these anaerobic conditions. Since the anr and dnr mutant strains do not grow under anaerobic denitrifying conditions, we applied anaerobic shift experiments. Pseudomonas aeruginosa was grown in a modified AB minimal medium, containing 25 µM FeSO4, 20 mM glucose and 50 mM NaNO3. The 200 ml aerobic cultures were grown in 1 l Erlenmeyer flasks at 37 oC and 300 rpm. The aerobic culture was grown to an OD578 of 0.3. For the aerobic culture, cells were harvested at this point. For the anaerobic shift experiments 130 ml of the respective aerobic culture were transferred to a 135 ml sealed serum flask. Control experiments verified that oxygen tension decreased within 3 - 5 min below the detection limit of an oxygen electrode. The cells were harvested after incubation for additional 2h under anaerobic conditions. Within these 2h incubation period no growth of the wild type, the anr mutant or the dnr mutant strain was observed. First comparison: Identification of genes induced or repressed under anaerobic conditions in the P. aeruginosa wild type PAO1. Here we compared the transcriptome profile of P. aeruginosa PAO1 grown under aerobic conditions up to an OD578 of 0.3 with the transcriptome profile of the PAO1 strain, which was first grown under aerobic conditions up to an OD578 of 0.3 and than shifted to anaerobic conditions by transfer to a sealed serum flask and further incubated for two hours under anaerobic conditions. Second comparison: Identification of genes regulated differently in the anr mutant strain PAO6261. Here we compared the transcriptome profile of the P. aeruginosa wild type PAO1 with the transcriptome profile of the P. aeruginosa anr mutant strain PAO6261. Both strains were harvested after 2h incubation under anaerobic conditions. Third comparison: Identification of genes regulated differently in the dnr mutant strain RM536. Here we compared the transcriptome profile of the P. aeruginosa wild type PAO1 with the transcriptome profile of the P. aeruginosa dnr mutant strain RM536. Both strains were harvested after 2h incubation under anaerobic conditions.
Project description:Propionibacterium freudenreichii (PFR) DSM 20271 is a bacterium known for its ability to thrive in diverse environments and produce vitamin B12. Despite its anaerobic preference, recent studies have elucidated its ability to prosper in the presence of oxygen, prompting a deeper exploration of its physiology under aerobic conditions. Here, we investigated the response of DSM 20271 to aerobic growth by employing comparative transcriptomic and surfaceome analyses alongside metabolite profiling. Cultivation under controlled partial pressure of oxygen (pO2) conditions revealed significant increases in biomass formation and altered metabolite production, notably B12 vitamin, pseudovitamin-B12, propionate and acetate, under aerobic conditions. Transcriptomic analysis identified differential expression of genes involved in lactate metabolism, TCA cycle, and electron transport chain, suggesting metabolic adjustments to aerobic environments. Moreover, surfaceome analysis unveiled growth environment-dependent changes in surface protein abundance, with implications for sensing and adaptation to atmospheric conditions. Supplementation experiments with key compounds highlighted the potential for enhancing aerobic growth, emphasizing the importance of iron and α-ketoglutarate availability. Furthermore, in liquid culture, FeSO4 supplementation led to increased heme production and reduced vitamin B12 production, highlighting the impact of oxygen and iron availability on the metabolic pathways. These findings deepen our understanding of PFR's physiological responses to oxygen availability and offer insights for optimizing its growth in industrial applications.
Project description:To see the effect of sub-lethal concentration of tobramcyin on PAO1 under anaerobic conditions. RNA was isolated from 5 biological repeats of PAO1 grown to mid-log phase in cationic adjusted mueller hinton broth containing 15mM KNO3 and 5 biological repeats of PAO1 grown to mid-log phase in cationic adjusted mueller hinton broth containing 15mM KNO3 and then treated for 30 minutes with 2 ug/ml tobramycin. All flasks were sealed to create anaerobic conditions. null
Project description:Recent studies have shown that the concentrations of proteins expressed from orthologous genes are often conserved across organisms, and to a greater extent than the abundances of the corresponding mRNAs. However, such studies have not distinguished between evolutionary (e.g., sequence divergence) and environmental (e.g., growth condition) effects on the regulation of steady-state protein and mRNA abundances. Here we systematically investigated the transcriptome and proteome of two closely related Pseudomonas aeruginosa strains, PAO1 and PA14, under identical experimental conditions, thus controlling for environmental effects. For 703 genes observed by both shotgun proteomics and microarray experiments, we find that the protein-to-mRNA ratios are highly correlated between orthologous genes in the two strains, to an extent comparable to protein and mRNA abundances. In spite of this high molecular similarity between PAO1 and PA14, we found that several metabolic, virulence, and antibiotic resistance genes are differentially expressed between the two strains, mostly at the protein but not at the mRNA level. Our data demonstrate that post-transcriptional regulation is important for understanding the discordance between mRNA and protein abundance.
Project description:We report antibacterial potency of oxythiamine, which is a known transketolase inhibitor in eukaryotes. Oxythiamine inhibited the growth of P. aeruginosa PAO1 and clinical isolates in thiamine-depleted medium only. Metabolic and trascriptomic analyses indicated that oxythiamine was converted to oxythiamine pyrophosphate that subsequently inhibited several vitamin B1-dependent enzymes. Furthermore, a system-level perturbation of thiamine metabolism sensitized P. aeruginosa to multiple small-molecules informing the potential development of a rational drug combination.
Project description:Recent studies have shown that the concentrations of proteins expressed from orthologous genes are often conserved across organisms, and to a greater extent than the abundances of the corresponding mRNAs. However, such studies have not distinguished between evolutionary (e.g., sequence divergence) and environmental (e.g., growth condition) effects on the regulation of steady-state protein and mRNA abundances. Here we systematically investigated the transcriptome and proteome of two closely related Pseudomonas aeruginosa strains, PAO1 and PA14, under identical experimental conditions, thus controlling for environmental effects. For 703 genes observed by both shotgun proteomics and microarray experiments, we find that the protein-to-mRNA ratios are highly correlated between orthologous genes in the two strains, to an extent comparable to protein and mRNA abundances. In spite of this high molecular similarity between PAO1 and PA14, we found that several metabolic, virulence, and antibiotic resistance genes are differentially expressed between the two strains, mostly at the protein but not at the mRNA level. Our data demonstrate that post-transcriptional regulation is important for understanding the discordance between mRNA and protein abundance.
Project description:Pseudomonas aeruginosa is one of the most frequent pathogen dominant in complicated urinary tract infections (UTI). To unravel the adaptation strategies of P. aeruginosa to the conditions in the urinary tract and to define the underlying regulatory network an artificial growth system mimicking the conditions in the urinary tract was established. Transcriptome analyses were used to investigate the physiological status of P. aeruginosa under this conditions. We performed comparisons to identify genes induced under artificial urinary tract conditions to unravel the adaptive strategies and the underlying regulatory network used by Pseudomonas aeruginosa during urinary tract infections using Affimetrix GeneChips. Pseudomonas aeruginosa wild type strain PAO1 was grown in an artificial in vitro growth system mimicking the conditions in the urinary tract. Therefore, biofilms were grown on the surface of membrane filters placed on agar plates at 37 °C up to the late logarithmic state under aerobic and anaerobic conditions (incubated in an anaerobic beanch). An artificial urine medium (AUM) simulating the averaged urine of an human adult was used as nutrient souce. 10-fold diluted Luria Bertani (LB)-medium was used as reference medium. For growth under oxygen depletion the media were supplemented with 50 mM KNO3 to sustain anaerobic respiration. The biofilms were harveted at this time points and resuspsended in 0.9% (w/v) NaCl. The OD578 of biofilm suspension was 0.8 for all tested conditions. First comparison: Identification of genes induced or repressed under aerobic conditions in the P. aeruginosa wild type PAO1. Here we compared the transcriptome profile of P. aeruginosa PAO1 grown aerobically for 18 h to the late logarithmic phase in biofilms on AUM with the transcriptome profile of the PAO1 strain, which was grown aerobically for 18 h to the late logarithmic phase in biofilms on 10-fold diluted LB. Second comparison: Identification of genes induced or repressed under anaerobic conditions in the P. aeruginosa wild type PAO1. Here we compared the transcriptome profile of P. aeruginosa PAO1 grown anaerobically for 2 days up to the late logarithmic phase in biofilms on AUM supplemented with 50 mM nitrate with the transcriptome profile of the PAO1 strain, which was grown anaerobically for 2 days up to the late logarithmic phase in biofilms on 10-fold diluted LB supplemented with 50 mM nitrate.
Project description:We aim to compare global transcriptomic analysis of wt and delta-nrdRmutant in Pseudomonas aeruginosa PAO1 during aerobic and anaerobic conditions.