Project description:Light is the primary environmental cue in resetting the phase of circadian pacemaker in vertebrates. In birds, the effect of light is partly mediated by modulating the levels of circadian genes in the pineal gland. To further elucidate the mechanism by which light resets the circadian clock, we studied gene expression in the chicken pineal gland under acutely extended light period.
Project description:The cone-rod homeobox gene (Crx) encodes Crx, a transcription factor selectively expressed in two cell types, retinal photoreceptors and the melatonin secreting pinealocytes of the pineal gland. In this report the role of Crx in regulating gene expression in the mammalian pineal gland was extended using Affymetrix GeneChip technology. Deletion of Crx results in broad modulation of the mouse pineal transcriptome, including a >2-fold downregulation of 543 genes and a >2-fold upregulation of 745 genes. In addition to Crx, there was a >10-fold downregulation of 13 other genes. Of special interest was the discovery of a link between Crx and the homeobox gene Hoxc4, which was upregulated ~20-fold in the Crx-/- pineal gland. Analysis of night and day expression of genes indicated that a set of 51 genes exhibited differential expression in control animals. Of these genes, only eight were also differentially expressed in Crx-/- animals. This group included Aanat, which encodes the enzyme that controls the daily rhythm in melatonin synthesis in the vertebrate pineal gland. Accordingly, Crx appears to be essential for the 24-hour rhythmic component of expression of some genes in the pineal gland. In the Crx-/- mouse pineal gland, 41 genes exhibited differential night/day expression that was not seen in control animals, suggesting that Crx may function to modulate rhythmic expression of these genes as well. Together, the results of this investigation indicate that Crx broadly modulates the pineal transcriptome, perhaps in part through suppressive effects on expression of the homeobox gene Hoxc4.
Project description:Chick pinealocytes exhibit all the characteristics of a complete circadian system, comprising photoreceptive inputs, molecular clockworks and an easily measured rhythmic output, melatonin biosynthesis. We used microarray analysis to investigate the expression of approximately 8000 genes within cultured pinealocytes subjected to both LD and DD cycles. We report that a reduced subset of genes were rhythmically expressed in vitro compared to those previously published in vivo, and that gene expression rhythms were lower in amplitude, although the functional distribution of the rhythmic transcriptome was largely similar. We also investigated the effects of 6-hour pulses of light or of norepinephrine on gene expression in free-running cultures during both subjective day and night. As expected, both light and norepinephrine inhibited melatonin production; however, the two treatments differentially up- or down-regulated specific sets of genes in a fashion that was dependent upon time of day. Our combined approach of utilizing a time of day study and a light/NE pulse microarray experiment allowed us to identify novel genes linking clock input to clock function within the pineal. We identified approximately 30 rhythmic, light-responsive, NE-insensitive genes with no previously known clock function, which may play a role in circadian regulation of the pineal. These are candidates for future functional genomics experiments to elucidate their potential role in pineal physiology. Keywords: circadian; avian; pineal; light; norepinephrine
Project description:Light is the primary environmental cue in resetting the phase of circadian pacemaker in vertebrates. In birds, the effect of light is partly mediated by modulating the levels of circadian genes in the pineal gland. To further elucidate the mechanism by which light resets the circadian clock, we studied gene expression in the chicken pineal gland under acutely extended light period. Three paradigms of treatments were used in this study. For each paradigm, chicks were assigned at random to control treatment (control groups) or light treatment (light groups). All birds in control groups were given 12 h light and 12 h dark period (LD 12:12). Light-on time is referred to as Zeitgeber Time 0 (ZT0). In paradigm 1, birds in the light group (n =25 for each of the groups in each paradigm) were acclimated to LD 12:12 for one week in the same light scheme as were the control birds, then exposed to light for 2 h during the subjective late night (ZT22 to ZT24) on the last day. All birds (including the controls) were sacrificed at ZT0. Pineal glands were dissected and 5-6 pineal glands were pooled for the preparation of one RNA sample. In paradigm 2, birds in the light group were acclimated as in paradigm 1 for one week, then exposed to light for 2 h during the early subjective night (ZT12 to ZT14) on the last day. All birds (including controls) were sacrificed at ZT14. The pineal glands were also pooled as before. In paradigm 3, birds in the light group (n = 25) were kept in LD 15:9 cycle all the time, and all birds (including controls) were sacrificed at ZT14. Similarly, 5-6 pineal glands in the same treatment were pooled.
Project description:The cone-rod homeobox gene (Crx) encodes Crx, a transcription factor selectively expressed in two cell types, retinal photoreceptors and the melatonin secreting pinealocytes of the pineal gland. In this report the role of Crx in regulating gene expression in the mammalian pineal gland was extended using Affymetrix GeneChip technology. Deletion of Crx results in broad modulation of the mouse pineal transcriptome, including a >2-fold downregulation of 543 genes and a >2-fold upregulation of 745 genes. In addition to Crx, there was a >10-fold downregulation of 13 other genes. Of special interest was the discovery of a link between Crx and the homeobox gene Hoxc4, which was upregulated ~20-fold in the Crx-/- pineal gland. Analysis of night and day expression of genes indicated that a set of 51 genes exhibited differential expression in control animals. Of these genes, only eight were also differentially expressed in Crx-/- animals. This group included Aanat, which encodes the enzyme that controls the daily rhythm in melatonin synthesis in the vertebrate pineal gland. Accordingly, Crx appears to be essential for the 24-hour rhythmic component of expression of some genes in the pineal gland. In the Crx-/- mouse pineal gland, 41 genes exhibited differential night/day expression that was not seen in control animals, suggesting that Crx may function to modulate rhythmic expression of these genes as well. Together, the results of this investigation indicate that Crx broadly modulates the pineal transcriptome, perhaps in part through suppressive effects on expression of the homeobox gene Hoxc4. Pineal glands from control (129sv) mice and Crx-/- mice were collected at ZT6 and ZT20 for RNA extraction and hybridization on Affymetrix mouse 430_2 chip. Each condition were performed as triplicats. SUPPLEMENTARY FILES: The GCOS signal intensity data were analyzed using ChipInspector (Genomatix) version 2.1. FDR= 0, p-value <0.05, cut off=1, region size = 300 bp and 4 and 5 significant probes. Log(2) fold change independently of time of day. Up regulated genes: genes which are up regulated in Crx-/- compared to the control; down regulated genes: genes which are down regulated in Crx-/- compared to the control.
Project description:Light has a strong effect on whole organism physiology, such as the circadian rhythms that are phase delayed and advanced by light given at early and late subjective night, respectively. Despite the importance of the phase-dependent light responses, little is known about the underlying molecular mechanism. We performed a comprehensive analysis of genes induced by light in a phase-dependent manner in the chicken pineal gland, an organ that represents a unique vertebrate clock system harboring intrinsic light sensitivity.
Project description:Light has a strong effect on whole organism physiology, such as the circadian rhythms that are phase delayed and advanced by light given at early and late subjective night, respectively. Despite the importance of the phase-dependent light responses, little is known about the underlying molecular mechanism. We performed a comprehensive analysis of genes induced by light in a phase-dependent manner in the chicken pineal gland, an organ that represents a unique vertebrate clock system harboring intrinsic light sensitivity. Newborn chicks were entrained to 12-h light/12-h dark cycle for 7 days then transferred to constant darkness for a day to be exposed to light for 1 h from CT (circadian time) 6 (representing subjective day), CT14 (early subjective night) or CT22 (late subjective night). Control animals were kept in the dark without light pulse. The pineal glands were isolated at the end of the 1-h light pulse for gene expression analysis by Affymetrix GeneChip. Each condition contains 2 biological samples.
Project description:Biological processes are optimized by circadian and circannual biological timing systems. In vertebrates, the pineal gland plays an essential role in these systems by converting time into a hormonal signal, melatonin; in all vertebrates, circulating melatonin is elevated at night, independent of lifestyle. We have analyzed the rat pineal transcriptome at mid-day and mid-night to identify genes that exhibit night/day changes in expression. We have also used these data to characterize the non-rhythmic features of the transcriptome that set the pineal gland apart from other tissues by comparing them to the median expression in other rat tissues as found in the Genomics Institute of the Novartis Research Foundation (GNF), Entrez Gene Expression Omnibus (GEO) dataset GDS589. Experiment Overall Design: Rat pineal glands were obtained at mid-day and mid-night for RNA extraction and hybridization to Affymetrix microarrays. Triplicates of pooled pineal glands were analyzed at each timepoint.
Project description:Biological processes are optimized by circadian and circannual biological timing systems. In vertebrates, the pineal gland plays an essential role in these systems by converting time into a hormonal signal, melatonin; in all vertebrates, circulating melatonin is elevated at night, independent of lifestyle. We have analyzed the rat pineal transcriptome at mid-day and mid-night to identify genes that exhibit night/day changes in expression. We have also used these data to characterize the non-rhythmic features of the transcriptome that set the pineal gland apart from other tissues by comparing them to the median expression in other rat tissues as found in the Genomics Institute of the Novartis Research Foundation (GNF), Entrez Gene Expression Omnibus (GEO) dataset GDS589. Keywords: Time course (2 points)