Project description:Affymetrix SNP6.0 data for human induced pluripotent stem cells (hiPSCs), human Fibroblasts, and human embryonic stem cells (hESCs)
Project description:Expression data of human induced pluripotent stem cells (hiPSCs), human embryonic stem cells (hESCs) and those differentiated cells.
Project description:Differentiation of mammalian pluripotent cells involves large-scale changes in transcription and, among the molecules that orchestrate these changes, chromatin remodellers are essential to initiate, establish and maintain a new gene regulatory network. The NuRD complex is a highly conserved chromatin remodeller which fine-tunes gene expression in embryonic stem cells. While the function of NuRD in mouse pluripotent cells has been well defined, no study yet has defined NuRD function in human pluripotent cells. We investigated the structure and function of NuRD in human induced pluripotent stem cells (hiPSCs). Using immunoprecipitation followed by mass-spectrometry in hiPSCs and in naive or primed mouse pluripotent stem cells, we find that NuRD structure and biochemical interactors are generally conserved. Using RNA sequencing, we find that, whereas in mouse primed stem cells and in mouse naive ES cells, NuRD is required for an appropriate level of transcriptional response to differentiation signals, hiPSCs require NuRD to initiate these responses. This difference indicates that mouse and human cells interpret and respond to induction of differentiation differently.
Project description:Assessing relevant molecular differences between human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) is important, given that such differences may impact their potential therapeutic use. Controversy surrounds recent gene expression studies comparing hiPSCs and hESCs. Here, we present an in-depth quantitative mass spectrometry-based analysis of hESCs, two different hiPSCs and their precursor fibroblast cell lines. Our comparisons confirmed the high similarity of hESCs and hiPSCS at the proteome level as 97.8% of the proteins were found unchanged. Nevertheless, a small group of 58 proteins, mainly related to metabolism, antigen processing and cell adhesion, was found significantly differentially expressed between hiPSCs and hESCs. A comparison of the regulated proteins with previously published transcriptomic studies showed a low overlap, highlighting the emerging notion that differences between both pluripotent cell lines rather reflect experimental conditions than a recurrent molecular signature. See the Data Processing section of the published paper concerning the bioinformatics pipeline used. PMCID: PMC3261715 PMID: 22108792 Mol Syst Biol. 2011 Nov 22;7:550. doi: 10.1038/msb.2011.84. The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells. Munoz J, Low TY, Kok YJ, Chin A, Frese CK, Ding V, Choo A, Heck AJ. Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.