Project description:Genetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population. In this study, we generated H9 hESC harboring LRRK2 (G2019S) mutation by gene knockin. Wildtype and LRRK2 mutant hESC were differentiated into NSC using a chemically defined protocol. LRRK2 mutant NSC were treated with or without the LRRK2 kinase specific inhibitor (LRRK2-IN-1). Global gene expression analysis was performed to assess the overall similarity of gene expression profiles among three NSC groups (wildtype; LRRK2 mutant; LRRK2 mutant with inhibitor treatment).
Project description:Genetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population. In this study, we generated human induced pluripotent stem cell (iPSC) lines from LRRK2 (G2019S) bearing patient fibroblasts by cell reprogramming. We performed global gene expression profiling of LRRK2 (G2019S) heterozygous and homozygous patient iPSC lines, and the corresponding fibroblast lines they originated from. An age-matched wildtype human fibroblast line and H1 human embryonic stem cell (ESC) line were used as controls. Microarray gene expression profiling was done to: (1) Compare global gene expression differences between wildtype fibroblasts and fibroblasts from patients bearing homozygous and heterozygous LRRK2 (G2019S) mutation; (2) Compare global gene expression differences between wildtype iPSC and iPSC generated from LRRK2 (G2019S) homozygous and heterozygous patients; (3) Check that all iPSC generated from wildtype and patients fibroblasts are in fact similar to human pluripotent ESC.
Project description:Genetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population. In this study, we generated human induced pluripotent stem cell (iPSC) lines from LRRK2 (G2019S) bearing patient fibroblasts by cell reprogramming. We performed global gene expression profiling of LRRK2 (G2019S) heterozygous and homozygous patient iPSC lines, and the corresponding fibroblast lines they originated from. An age-matched wildtype human fibroblast line and H1 human embryonic stem cell (ESC) line were used as controls.
Project description:Genetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population. In this study, we generated H9 hESC harboring LRRK2 (G2019S) mutation by gene knockin. Wildtype and LRRK2 mutant hESC were differentiated into NSC using a chemically defined protocol.
Project description:Recent advances in generating 3 dimensional (3D) organoid systems from stem cells offer new possibilities for disease modeling. In this study, we generate isogenic 3D midbrain organoids with or without a Parkinson’s disease-associated LRRK2 G2019S mutation. LRRK2-G2019S midbrain organoids derived from LRRK2 targeted human iPSCs in vitro have LRRK2-associated sporadic Parkinson's disease phenotypes. Midbrain-like 3D organoids expressing LRRK2-G2019S showed dynamic changes in globle gene expression.