Project description:Here we compare the global gene expression of induced pluripotent stem cell (iPS) cells with those of normal human embryonic stem cells and parental mesenchymal cells. Keywords: reprogramming, iPS We used 1 chip/sample (3 iPS clones for each mesenchymal clone - 12 iPS clones; 4 mesenchymal clones and 5 normal human ES cell lines).
Project description:We developed and report on a novel new technique to reprogramm fobroblasts from two non-permissive mouse backgrounds into emrbyonic stem cell-like induced pluripotent stem cells
Project description:It has been shown that DNA demethylation has a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid) is involved in DNA demethylation in several developmental processes and cell fusion-mediated reprogramming. Based on the reports, we hypothesized that Aid may be involved in DNA demethylation during the iPS cell generation. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid-/-) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By the introduction of Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP positive iPS cells could be generated from the fibroblasts and primary B cells of Aid-/- mice. The Aid-/- iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. The comprehensive DNA methylation analysis by MBD-sequening demonstrated that there were only a few differences between Aid+/+ and Aid-/- iPS cells. Aid+/+ and Aid-/- iPS colonies were generated from Aid+/+ and Aid-/- MEFs and picked up mechanically. The clones were passaged four times on feeder cells and two times on gelatin-coated dishes to exclude the contamination of feeder cells. Subsequently, the genome was isolated. Four Aid+/+ iPS cell clones and four Aid-/- iPS cell clones were compared. To confirm the validity of MBD-sequencing, four Aid+/+ iPS cell clones were compared with three ES cell clones or three Aid+/+ MEFs.
Project description:It has been shown that DNA demethylation has a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid) is involved in DNA demethylation in several developmental processes and cell fusion-mediated reprogramming. Based on the reports, we hypothesized that Aid may be involved in DNA demethylation during the iPS cell generation. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid-/-) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By the introduction of Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP positive iPS cells could be generated from the fibroblasts and primary B cells of Aid-/- mice. The Aid-/- iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. Microarray analysis demonstrated that the global gene expression of Aid-/- iPS cells was similar to that of Aid+/+ iPS cells. Aid+/+ and Aid-/- iPS colonies were generated from Aid+/+ and Aid-/- MEFs and picked up mechanically. The clones were passaged four times on feeder cells and two times on gelatin-coated dishes to exclude the contamination of feeder cells. Subsequently, the RNA was isolated. Six Aid+/+ iPS cell clones and six Aid-/- iPS cell clones were compared by microarray.
Project description:Induced pluripotent stem (iPS) cells give rise to neural stem cells, which are applicable for therapeutic transplantation in treatment of neural diseases. However, generation of neural stem cells from iPS cells requires a careful selection of safe iPS clones. We sought to determine whether direct induction of neural stem cells from partially reprogrammed somatic cells is able to generate safer cells rapidly. We have successfully established direct induction system from fibroblast to neural stem cells. To characterize these directly induced neural stem cells, Gene expression profiles were compared with iPS cell or ES cell-derived neurosphere. We used affymetrix microarrays to compare the global gene expression of neurospheres prepared several method.
Project description:It has been shown that DNA demethylation has a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid) is involved in DNA demethylation in several developmental processes and cell fusion-mediated reprogramming. Based on the reports, we hypothesized that Aid may be involved in DNA demethylation during the iPS cell generation. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid-/-) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By the introduction of Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP positive iPS cells could be generated from the fibroblasts and primary B cells of Aid-/- mice. The Aid-/- iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. Microarray analysis demonstrated that the global gene expression of Aid-/- iPS cells was similar to that of Aid+/+ iPS cells. Aid+/+ and Aid-/- iPS colonies were generated from Aid+/+ and Aid-/- MEFs and picked up mechanically. The clones were passaged four times on feeder cells and two times on gelatin-coated dishes to exclude the contamination of feeder cells. Subsequently, the RNA was isolated. Six Aid+/+ iPS cell clones and six Aid-/- iPS cell clones were compared by microarray. Samples from Aid+/+ and Aid-/-iPS cells
Project description:Reprogramming of somatic cells provides potential for the generation of specific cell types, which could be a key step in the study and treatment of human diseases. In vitro reprogramming of somatic cells into a pluripotent embryonic stem (ES) cellM-bM-^@M-^Slike state has been reported by retroviral transduction of murine fibroblasts using four embryonic transcription factors or through cell fusion of somatic and pluripotent stem cells. The generation of reprogrammed pluripotent cells using a somatic cell donor source such as bone marrow (BM) or peripheral blood is of particular therapeutic interest because of the relative ease of harvesting these cell types. Here we show that mouse adult BM mononuclear cellsM-oM-<M-^HBM MNCsM-oM-<M-^Iare competent as donor cells and can be reprogrammed into pluripotent ES cell-like cells. We isolated BM MNCs and embryonic fibroblasts (MEFs) from Oct4-EGFP transgenic mice, fused them with ES cells and infected them with retroviruses expressing Oct4, Sox2, Klf4, and c-Myc. Fused BM cells formed more ES-like colonies than did MEFs. Infected BM cells gave rise to iPS cells, although transduction efficiencies were not high. It was more efficient to pick up iPS colonies as compared with MEFs. BM-derived iPS (BM iPS) cells expressed embryonic stem cell markers, formed teratomas, and contributed to chimera mice with germline development. Clonal analysis revealed that BM iPS clones had diversity, although some clones were found to be genetically identical with different phenotypes. Here we demonstrate, for the first time, the induction of pluripotent cells directly from hematopoietic tissue. Gene expression profiling was performed in mouse BMMNCs, ES and BMMNC derived iPS cell lines.