Project description:CLP1 was the first mammalian RNA kinase to be identified. However, determining its in vivo function has been elusive. Here we generated kinase-dead Clp1 (Clp1K/K) mice that show a progressive loss of spinal motor neurons associated with axonal degeneration in the peripheral nerves and denervation of neuromuscular junctions, resulting in impaired motor function, muscle weakness, paralysis and fatal respiratory failure. Transgenic rescue experiments show that CLP1 functions in motor neurons. Mechanistically, loss of CLP1 activity results in accumulation of a novel set of small RNA fragments, derived from aberrant processing of tyrosine pre-transfer RNA. These tRNA fragments sensitize cells to oxidative-stress-induced p53 (also known as TRP53) activation and p53-dependent cell death. Genetic inactivation of p53 rescues Clp1K/K mice from the motor neuron loss, muscle denervation and respiratory failure. Our experiments uncover a mechanistic link between tRNA processing, formation of a new RNA species and progressive loss of lower motor neurons regulated by p53. RNA was extracted from spinal cord of 3 Clp1 knock-out mice and 3 wild type mice (15 days old, male, all samples age and sex matched) and submitted to differential splicing analysis using Affymetrix Exon microarrays. Differential splicing analysis was performed between the Clp1 KO and WT samles employing a custom CDF, that was based on a complete re-alignment of oligonucleotide probes to the genome and transcriptome (Ensembl 52, ASTD 1.1; further information on http://bioinfo.i-med.ac.at).
Project description:CLP1 was the first mammalian RNA kinase to be identified. However, determining its in vivo function has been elusive. Here we generated kinase-dead Clp1 (Clp1K/K) mice that show a progressive loss of spinal motor neurons associated with axonal degeneration in the peripheral nerves and denervation of neuromuscular junctions, resulting in impaired motor function, muscle weakness, paralysis and fatal respiratory failure. Transgenic rescue experiments show that CLP1 functions in motor neurons. Mechanistically, loss of CLP1 activity results in accumulation of a novel set of small RNA fragments, derived from aberrant processing of tyrosine pre-transfer RNA. These tRNA fragments sensitize cells to oxidative-stress-induced p53 (also known as TRP53) activation and p53-dependent cell death. Genetic inactivation of p53 rescues Clp1K/K mice from the motor neuron loss, muscle denervation and respiratory failure. Our experiments uncover a mechanistic link between tRNA processing, formation of a new RNA species and progressive loss of lower motor neurons regulated by p53.
Project description:Loss of CLP1 activity results in the accumulation of novel sets of small RNA fragments derived from aberrant processing of tyrosine pre-tRNA. Such tRNA fragments sensitize cells to oxidative stress-induced p53 activation and p53-dependent cell death. 2 samples, Wt and Clp1(k/k), no replicates
Project description:Homozygous mutation of the RNA kinase CLP1 causes pontocerebellar hypoplasia type 10 (PCH10), a pediatric neurodegenerative disease. CLP1 is associated with the tRNA splicing endonuclease complex and the cleavage and polyadenylation machinery, but its function remains unclear. We generated two mouse models of PCH10: one homozygous for the disease-associated Clp1 mutation, R140H, and one heterozygous for this mutation and a null allele. Both models exhibit loss of lower motor neurons and neurons of the deep cerebellar nuclei. To explore whether Clp1 mutation impacts tRNA splicing, we profiled the products of intron-containing tRNA genes. While mature tRNAs were expressed at normal levels in mutant mice, numerous other products of intron-containing tRNA genes were dysregulated, with pre-tRNAs, introns, and certain tRNA fragments upregulated, and other fragments downregulated. However, the spatiotemporal patterns of dysregulation did not support a role in pathogenicity for most altered tRNA products. To elucidate the effect of Clp1 mutation on pre-mRNA cleavage, we analyzed poly(A) site (PAS) usage and gene expression in Clp1R140H/- spinal cord. PAS usage was shifted from proximal to distal sites in the mutant mouse, particularly in short and closely spaced genes. Many such genes also were expressed at lower levels in the Clp1R140H/- mouse, possibly as a result of impaired transcript maturation. These findings are consistent with the hypothesis that select genes are particularly dependent upon CLP1 for proper pre-mRNA cleavage, suggesting that the contribution of mRNA 3’ processing to pathogenesis in PCH10 merits further investigation.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose pathophysiology is largely unknown. Despite motor neuron death is recognized as the key event in ALS, astrocytes dysfunctionalities and neuroinflammation were demonstrated to accompany and probably even drive motor neuron loss. Nevertheless, the mechanisms priming astrocyte failure and hyperactivation are still obscure. In this work, altered pathways in ALS astrocytes were unveiled by investigating the proteomic profile of primary spinal-cord astrocytes derived from transgenic ALS mouse model overexpressing the human (h)SOD1(G93A) protein, in comparison with the transgenic counterpart expressing hSOD1(WT) protein. In this research, we showed that hSOD1(G93A) astrocytes present a profound alterations in the expression of proteins involved in proteostasis and glutathione metabolism.
Project description:Loss of CLP1 activity results in the accumulation of novel sets of small RNA fragments derived from aberrant processing of tyrosine pre-tRNA. Such tRNA fragments sensitize cells to oxidative stress-induced p53 activation and p53-dependent cell death.