Project description:Background: Clinical trial and epidemiological data support that the cardiovascular effects of estrogen are complex, including a mixture of both potentially beneficial and harmful effects. In animal models, estrogen protects females from vascular injury and inhibits atherosclerosis. These effects are mediated by estrogen receptors (ERs), which when bound to estrogen can bind to DNA to directly regulate transcription. ERs can also activate several cellular kinases by inducing a M-bM-^@M-^\rapidM-bM-^@M-^] non-nuclear signaling cascade. However, the biologic significance of this rapid signaling pathway has been unclear. Methods and Results: Here, we develop a novel transgenic mouse in which rapid signaling is blocked by over-expression of a peptide that prevents ERs from interacting with the scaffold protein, striatin (the Disrupting Peptide Mouse, DPM). Microarray analysis of ex vivo-treated mouse aortas demonstrates that rapid ER signaling plays an important role in E2-mediated gene regulatory responses. Disruption of ER-striatin interactions also eliminates the ability of E2 to stimulate cultured endothelial cell migration and to inhibit cultured vascular smooth muscle cell growth. The importance of these findings is underscored by in vivo experiments demonstrating loss of estrogen-mediated protection against vascular injury in the DPM mouse following carotid artery wire injury. Conclusions: Taken together, these results support that rapid, non-nuclear ER signaling contributes to the transcriptional regulatory functions of ER, and is essential for many of the vasoprotective effects of estrogen. These findings also identify the rapid ER signaling pathway as a potential target for the development of novel therapeutic agents. Transgenic disrupting peptide mice (DPM) express the Estrogen Receptor (ER) alpha amino acids 176-253 peptide under CMV promoter control. This peptide blocks interactions between ER and striatin, which inhibits rapid non-genomic signaling by ER to cellular kinases. Female WT and DPM mice (4 mice per sample) were overiectomized, and 1 week later aortas were harvested and treated + 10 nM beta-estradiol (E2) or + EtOH vehicle (Veh) for 4 hrs ex vivo. Total RNA was collected, reverse transcribed to cDNA and used to probe Affymetrix mouse 430.A 2.0 arrays.
Project description:Background: Clinical trial and epidemiological data support that the cardiovascular effects of estrogen are complex, including a mixture of both potentially beneficial and harmful effects. In animal models, estrogen protects females from vascular injury and inhibits atherosclerosis. These effects are mediated by estrogen receptors (ERs), which when bound to estrogen can bind to DNA to directly regulate transcription. ERs can also activate several cellular kinases by inducing a “rapid” non-nuclear signaling cascade. However, the biologic significance of this rapid signaling pathway has been unclear. Methods and Results: Here, we develop a novel transgenic mouse in which rapid signaling is blocked by over-expression of a peptide that prevents ERs from interacting with the scaffold protein, striatin (the Disrupting Peptide Mouse, DPM). Microarray analysis of ex vivo-treated mouse aortas demonstrates that rapid ER signaling plays an important role in E2-mediated gene regulatory responses. Disruption of ER-striatin interactions also eliminates the ability of E2 to stimulate cultured endothelial cell migration and to inhibit cultured vascular smooth muscle cell growth. The importance of these findings is underscored by in vivo experiments demonstrating loss of estrogen-mediated protection against vascular injury in the DPM mouse following carotid artery wire injury. Conclusions: Taken together, these results support that rapid, non-nuclear ER signaling contributes to the transcriptional regulatory functions of ER, and is essential for many of the vasoprotective effects of estrogen. These findings also identify the rapid ER signaling pathway as a potential target for the development of novel therapeutic agents.
Project description:Estrogen receptor alpha (ERa) is required for the protective effects of 17-beta-estradiol (E2, the active, endogenous form of estrogen) after vascular injury or in atherosclerosis. E2-bound ERa can function as a transcription factor which binds directly to chromatin (the genomic pathway). Some ERa is also associated with the plasma membrane and, when bound by E2, activates cellular kinases, including PI3K, Akt and ERK (the rapid signaling pathway). Rapid signaling is mediated by interaction between ERa and the adaptor molecule striatin. Here we identify a triple point mutation (AA 231,233 & 234 KRR->AAA) of full length ERa that blocks its association with striatin and eliminates its ability to perform rapid signaling (without affecting its ability to perform genomic signaling). We have created stably-transfected human vascular endothelial cell lines expressing either WT ERa (WT ECs) or KRR mutant ERa (KRR ECs), and use these cells to show that rapid signaling through ERa is required for the proper regulation of most E2-regulated genes (the data presented in this record), and also for the ability of E2 to stimulate EC migration and proliferation and to inhibit inflammatory monocyte adhesion to ECs. Human Eahy 926 stable cell lines carrying a full length wild-type human estrogen receptor alpha (ERa) expression vector (WT ECs) or a full length KRR mutant ERa expression vector (KRR ECs, where the KRR mutant ERa is deficient in rapid signaling) were treated with or without 17-b-estradiol (E2) for 16 hrs. RNA from 3 bioligical replicates per condition was harvested and used to probe Illumina bead arrays.
Project description:Estrogen receptor alpha (ERa) is required for the protective effects of 17-beta-estradiol (E2, the active, endogenous form of estrogen) after vascular injury or in atherosclerosis. E2-bound ERa can function as a transcription factor which binds directly to chromatin (the genomic pathway). Some ERa is also associated with the plasma membrane and, when bound by E2, activates cellular kinases, including PI3K, Akt and ERK (the rapid signaling pathway). Rapid signaling is mediated by interaction between ERa and the adaptor molecule striatin. Here we identify a triple point mutation (AA 231,233 & 234 KRR->AAA) of full length ERa that blocks its association with striatin and eliminates its ability to perform rapid signaling (without affecting its ability to perform genomic signaling). We have created stably-transfected human vascular endothelial cell lines expressing either WT ERa (WT ECs) or KRR mutant ERa (KRR ECs), and use these cells to show that rapid signaling through ERa is required for the proper regulation of most E2-regulated genes (the data presented in this record), and also for the ability of E2 to stimulate EC migration and proliferation and to inhibit inflammatory monocyte adhesion to ECs.
Project description:Estrogen has vascular protective effects in premenopausal women and in women under 60 receiving hormone replacement therapy. However, estrogen also increases risks of breast and uterine cancers and of venous thromboses linked to upregulation of coagulation factors in the liver. In mouse models, the vasoprotective effects of estrogen are mediated by the estrogen receptor alpha (ERa) transcription factor. Here, through next generation sequencing approaches, we show that almost all of the genes regulated by 17-b-estradiol (E2) differ between mouse aorta and mouse liver, and that this is associated with a distinct genomewide distribution of ERa on chromatin. Bioinformatic analysis of E2-regulated promoters and ERa binding site sequences identify several transcription factors that may determine the tissue specificity of ERa binding and E2-regulated genes, including the enrichment of NFkB, AML1 and AP-1 sites in the promoters of E2 downregulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggests ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. Our results also highlight the likely importance of rapid signaling of membrane-associated ERa to cellular kinases (altering the activities of transcription factors other than ER itself) in determining tissue specific transcriptional responses to estrogen. The aortas or liver fragments of wild-type C57/BL6 mice were incubated ex vivo with 10nM E2 or ethanol vehicle for 45 minutes before formaldehyde fixation, harvesting of chromatin & ChIP with anti- mouse estrogen receptor alpha antibodies. Each condition was performed with two biological replicates, and each replicate contained aortas or liver fragments from 5 mice.
Project description:Estrogen has vascular protective effects in premenopausal women and in women under 60 receiving hormone replacement therapy. However, estrogen also increases risks of breast and uterine cancers and of venous thromboses linked to upregulation of coagulation factors in the liver. In mouse models, the vasoprotective effects of estrogen are mediated by the estrogen receptor alpha (ERa) transcription factor. Here, through next generation sequencing approaches, we show that almost all of the genes regulated by 17-b-estradiol (E2) differ between mouse aorta and mouse liver, and that this is associated with a distinct genomewide distribution of ERa on chromatin. Bioinformatic analysis of E2-regulated promoters and ERa binding site sequences identify several transcription factors that may determine the tissue specificity of ERa binding and E2-regulated genes, including the enrichment of NFkB, AML1 and AP-1 sites in the promoters of E2 downregulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggests ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. Our results also highlight the likely importance of rapid signaling of membrane-associated ERa to cellular kinases (altering the activities of transcription factors other than ER itself) in determining tissue specific transcriptional responses to estrogen. The aortas or liver fragments of wild-type C57/BL6 mice were incubated ex vivo with 10nM E2 or ethanol vehicle for 4 hours before harvesting for RNA collection. Each condition was performed with two biological replicates, and each replicate contained aortas or liver fragments from 4 mice.
Project description:Estrogen receptor alpha (ERa) has generally been thought to be transcriptionally inactive until it binds estrogen. Here we show that unliganded ERa, far from being transcriptionally inert, regulates a large number of genes both in vascular endothelial cells (ECs) and in mouse aorta. The genes regulated by unliganded ERa in the aorta (largely composed of smooth muscle cells) differ from those in ECs, and aorta- and EC-regulated promoters show enrichment in binding sites for distinct sets of transcription factors. In vitro, the presence of unliganded ERa decreases the migration and proliferation of ECs, and also increases proliferation of SMCs. Consistent with these effects on individual cells in vitro, mice lacking ERa, in the absence of estrogen, show significantly less SMC proliferation and medial thickening after carotid artery wire injury than ER intact mice. The effects of unliganded ERa on vascular gene expression, cell function in vitro and vascular injury responses in vivo are all reversed by the addition of estrogen. Taken together, these results indicate that unliganded ERa regulates vascular gene expression, vascular cell function, and vascular injury responses, and that the cardiovascular protective effects of estrogen may largely be due to the reversal of these effects of unliganded ERa. These results have important implications for the vascular health of men and post-menopausal women with vascular ERa and low circulating levels of estrogen. This study also raises the possibility that the steroid receptor family could have substantial hormone-independent functions in the vasculature and in other tissues.
Project description:Estrogen has vascular protective effects in premenopausal women and in women under 60 receiving hormone replacement therapy. However, estrogen also increases risks of breast and uterine cancers and of venous thromboses linked to upregulation of coagulation factors in the liver. In mouse models, the vasoprotective effects of estrogen are mediated by the estrogen receptor alpha (ERa) transcription factor. Here, through next generation sequencing approaches, we show that almost all of the genes regulated by 17-b-estradiol (E2) differ between mouse aorta and mouse liver, and that this is associated with a distinct genomewide distribution of ERa on chromatin. Bioinformatic analysis of E2-regulated promoters and ERa binding site sequences identify several transcription factors that may determine the tissue specificity of ERa binding and E2-regulated genes, including the enrichment of NFkB, AML1 and AP-1 sites in the promoters of E2 downregulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggests ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. Our results also highlight the likely importance of rapid signaling of membrane-associated ERa to cellular kinases (altering the activities of transcription factors other than ER itself) in determining tissue specific transcriptional responses to estrogen.
Project description:Estrogen has vascular protective effects in premenopausal women and in women under 60 receiving hormone replacement therapy. However, estrogen also increases risks of breast and uterine cancers and of venous thromboses linked to upregulation of coagulation factors in the liver. In mouse models, the vasoprotective effects of estrogen are mediated by the estrogen receptor alpha (ERa) transcription factor. Here, through next generation sequencing approaches, we show that almost all of the genes regulated by 17-b-estradiol (E2) differ between mouse aorta and mouse liver, and that this is associated with a distinct genomewide distribution of ERa on chromatin. Bioinformatic analysis of E2-regulated promoters and ERa binding site sequences identify several transcription factors that may determine the tissue specificity of ERa binding and E2-regulated genes, including the enrichment of NFkB, AML1 and AP-1 sites in the promoters of E2 downregulated inflammatory genes in aorta but not liver. The possible vascular-specific functions of these factors suggests ways in which the protective effects of estrogen could be promoted in the vasculature without incurring negative effects in other tissues. Our results also highlight the likely importance of rapid signaling of membrane-associated ERa to cellular kinases (altering the activities of transcription factors other than ER itself) in determining tissue specific transcriptional responses to estrogen.
Project description:DY131 is a pharmacological agonist of the orphan receptor estrogen-related receptor (ERR) γ which plays a crucial role in regulating energy generation, oxidative metabolism, cell apoptosis, inflammatory responses, etc. However, its role in acute liver injury is unknown. In the study, we evaluated the effect of DY131 on lipopolysaccharide (LPS)-induced liver injury. Transcriptomics analysis revealed that the dysregulated pathways associated with inflammation and metabolism were significantly reversed by DY131 in LPS-treated mice, providing more evidence in favor of the protective effect of DY131 against LPS-induced liver injury.