Project description:A Short-Term Study Investigating the Estrogenic Potency of Diethylstilbesterol in the Fathead Minnow (Pimephales promelas): Exposure Phase
Project description:A Short-Term Study Investigating the Estrogenic Potency of Diethylstilbesterol in the Fathead Minnow (Pimephales promelas): Recovery phase
Project description:Omics approaches are broadly used to explore endocrine and toxicity-related pathways and functions. Nevertheless, there is still a significant gap in knowledge in terms of understanding the endocrine system and its numerous connections and intricate feedback loops, especially in non-model organisms. The fathead minnow (Pimephales promelas) is a widely used small fish model for aquatic toxicology and regulatory testing, particularly in North America. A draft genome has been published but the amount of available genomic or transcriptomic information is still far behind that of other more broadly studied species, such as the zebrafish. Here, we surveyed the tissue-specific proteome and transcriptome profiles in adult male fathead minnow. To do so, we generated a draft transcriptome using short and long sequencing reads. We also performed RNA sequencing and proteomics analysis on the telencephalon, hypothalamus, liver, and gut of male fish. The main purpose of this analysis was to generate tissue-specific omics data in order to support future aquatic ecotoxicogenomic and endocrine-related studies as well as to improve our understanding of the fathead minnow as an ecological model.
Project description:Characterization of the renal transcriptomic response to Yersinia ruckeri/Conseuqences of early life stage thyroid suppression on long-term immune function and the immune response in the fathead minnow (Pimephales promelas)
Project description:RNA-seq expression assays were done in larval Pimephales promelas (Fathead minnow, FHM) exposed to 10 chemicals (3 metals, 4 Neonicotinoids, and 3 pharmaceuticals) over a range of concentrations to derive relatively short term transcriptomics based points of departure (tPODs). tPODs were compared to apical points of departures (aPODs) to investigate the potential use of the FHM tPODS as part of a high throughput approach that might be used in a regulatory context.
Project description:Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data upon which to base a risk assessment for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that most the ecological hazards of most PFAS remain uncharacterized. The present study employed a high throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response in larval fathead minnows (Pimephales promelas, 5-6 days post-fertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole body expression of 1832 genes, the median transcriptomic point of departure (tPOD) for the 20 PFAS tested was 10 µM. Longer chain carboxylic acids (12-13 C-F) and an eight C-F di-alcohol, N-alkyl sulfonamide, and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations below 1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sub-lethal effects have been reported in fish (available for 10 PFAS; including a range of species, life stages, and study designs). Nonetheless, fathead minnow tPODs were all orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes suggesting a substantial margin of safety in those systems, even for PFAS with significant potential for bioaccumulation. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening level potency estimates for use in ecological risk-based prioritization. Traditional toxicity testing has been unable to keep pace with the introduction of new chemicals into commerce. Consequently, there are limited or no toxicity data upon which to base a risk assessment for many chemicals to which fish and wildlife may be exposed. Per- and polyfluoroalkyl substances (PFAS) are emblematic of this issue in that most the ecological hazards of most PFAS remain uncharacterized. The present study employed a high throughput assay to identify the concentration at which 20 PFAS, with diverse properties, elicited a concerted gene expression response in larval fathead minnows (Pimephales promelas, 5-6 days post-fertilization) exposed for 24 h. Based on a reduced transcriptome approach that measured whole body expression of 1832 genes, the median transcriptomic point of departure (tPOD) for the 20 PFAS tested was 10 µM. Longer chain carboxylic acids (12-13 C-F) and an eight C-F di-alcohol, N-alkyl sulfonamide, and telomer sulfonic acid were among the most potent PFAS, eliciting gene expression responses at concentrations below 1 µM. With a few exceptions, larval fathead minnow tPODs were concordant with those based on whole transcriptome response in human cell lines. However, larval fathead minnow tPODs were often greater than those for Daphnia magna exposed to the same PFAS. The tPODs overlapped concentrations at which other sub-lethal effects have been reported in fish (available for 10 PFAS; including a range of species, life stages, and study designs). Nonetheless, fathead minnow tPODs were all orders of magnitude higher than aqueous PFAS concentrations detected in tributaries of the North American Great Lakes suggesting a substantial margin of safety in those systems, even for PFAS with significant potential for bioaccumulation. Overall, results broadly support the use of a fathead minnow larval transcriptomics assay to derive screening level potency estimates for use in ecological risk-based prioritization.
Project description:Production, usage and disposal of the munitions constituent (MC) cyclotrimethylenetrinitramine (RDX) has led to environmental releases on military facilities. The chemical attributes of RDX are conducive for leaching to surface water which may put aquatic organisms at risk of exposure. Because RDX has been observed to cause aberrant neuromuscular effects across a wide range of animal phyla, we assessed the effects of RDX on central nervous system (CNS) function in the representative aquatic ecotoxicological model species, fathead minnow (Pimephales promelas). A brain-tissue based cDNA library enriched for transcripts differentially expressed in response to RDX exposure was developed for fathead minnow and was transitioned to custom cDNA-based microarrays. All 4,128 cDNAs were sequenced, quality filtered and assembled yielding 3,018 unique sequences and 945 significant blastx matches (E ≤ 10-5). Bioassays were conducted exposing fathead minnows to RDX at 0.625, 1.25, 2.5, 5, 10 mg/L or an acetone-spike control for 10d. Overt toxicity of RDX in fathead minnow occurred only at the highest exposure concentration resulting in 50% mortality. Conversely, Bayesian analysis of microarray data indicated significant changes in transcript expression in fathead minnow brain tissue at RDX concentrations as low as 0.625 mg/L. In total, 154 microarray targets representing 44 unique transcript identities were differentially expressed in RDX exposures, the majority of which were validated by RT-qPCR. Investigation of molecular pathways, gene ontology and individual gene functions indicated that RDX exposures affected metabolic processes involved in: oxygen transport, neurological function, calcium binding / signaling, energy metabolism, cell cycle / cell proliferation, oxidative stress and ubiquitination. In total, our study indicated that RDX exposure affected molecular processes critical to CNS function in fathead minnow.
Project description:Characterization of proteome changes to zebrafish and fathead minnow following exposure to the Anatoxin-a surrogate anatoxin-fumerate.
Project description:Production, usage and disposal of the munitions constituent (MC) cyclotrimethylenetrinitramine (RDX) has led to environmental releases on military facilities. The chemical attributes of RDX are conducive for leaching to surface water which may put aquatic organisms at risk of exposure. Because RDX has been observed to cause aberrant neuromuscular effects across a wide range of animal phyla, we assessed the effects of RDX on central nervous system (CNS) function in the representative aquatic ecotoxicological model species, fathead minnow (Pimephales promelas). A brain-tissue based cDNA library enriched for transcripts differentially expressed in response to RDX exposure was developed for fathead minnow and was transitioned to custom cDNA-based microarrays. All 4,128 cDNAs were sequenced, quality filtered and assembled yielding 3,018 unique sequences and 945 significant blastx matches (E ≤ 10-5). Bioassays were conducted exposing fathead minnows to RDX at 0.625, 1.25, 2.5, 5, 10 mg/L or an acetone-spike control for 10d. Overt toxicity of RDX in fathead minnow occurred only at the highest exposure concentration resulting in 50% mortality. Conversely, Bayesian analysis of microarray data indicated significant changes in transcript expression in fathead minnow brain tissue at RDX concentrations as low as 0.625 mg/L. In total, 154 microarray targets representing 44 unique transcript identities were differentially expressed in RDX exposures, the majority of which were validated by RT-qPCR. Investigation of molecular pathways, gene ontology and individual gene functions indicated that RDX exposures affected metabolic processes involved in: oxygen transport, neurological function, calcium binding / signaling, energy metabolism, cell cycle / cell proliferation, oxidative stress and ubiquitination. In total, our study indicated that RDX exposure affected molecular processes critical to CNS function in fathead minnow. 10 Day RDX Exposure, Brain Tissue Investigation: Sub-adult fathead minnows were exposed to RDX in a 10d dose-series experiment (0.625, 1.25, 2.5, 5.0, or 10 mg/L RDX) which included an acetone-spike control (1% acetone). Each experimental treatment included 8 replicate fish (48 total fish) and endpoints included mortality, total weight and neurotoxicogenomics. The 1.25mg/L dose was not included in the microarray experiment. Please see attached PDF file for detailed 'Balanced, Interwoven Loop Design'.