Project description:Instability in the composition of gut bacterial communities, referred as dysbiosis, has been associated with important human intestinal disorders such as Crohn’s disease and colorectal cancer. Our data showed that Nod2-mediated risk of intestinal inflammation in colitis model is communicable to WT mice by cohousing. Here, we investigated if Nod2-deficient mice microbiota is able to change transcript profiles in Nod2-immunocompetent mice (C57Bl6/J mice) independently of colitis. Analysis used RNA extracted from colonic mucosa of C57Bl/6J mice co-housed with Nod2-deficient mice and C57Bl/6J mice alone. Direct comparisons of 4 biologicals replicates of C57Bl/6J mice cohoused with Nod2-deficient mice vs C57Bl/6J mice were performed.
Project description:Instability in the composition of gut bacterial communities, referred as dysbiosis, has been associated with important human intestinal disorders such as Crohn’s disease and colorectal cancer. Our data showed that Nod2-mediated risk of intestinal inflammation in colitis model is communicable to WT mice by cohousing. Here, we investigated if Nod2-deficient mice microbiota is able to change transcript profiles in Nod2-immunocompetent mice (C57Bl6/J mice) independently of colitis.
Project description:Instability in the composition of gut bacterial communities, referred as dysbiosis, has been associated with important human intestinal disorders such as CrohnM-bM-^@M-^Ys disease and colorectal cancer. Here, we show that dysbiosis coupled to Nod2 or Rip2 deficiency suffices to cause an increased risk for intestinal inflammation and colitis-associated carcinogenesis in mice. Aggravated epithelial lesions and dysplasia upon chemical-induced injury associated with loss of Nod2 or Rip2 can be prevented by antibiotics or anti-IL6R treatment. Nod2-mediated risk for intestinal inflammation and colitis-associated tumorigenesis is communicable through maternally-transmitted microbiota even to wild-type hosts. Disease progression was identified to drive complex NOD2-dependent changes of the colonic-associated microbiota. Reciprocal microbiota transplantation rescues the vulnerability of Nod2-deficient mice to colonic injury. Altogether, our results unveil an unexpected function for NOD2 in shaping a protective assembly of gut microbial communities, providing a rationale for intentional manipulation of genotype-dependent dysbiosis as a causative therapeutic principle in chronic intestinal inflammation. Analysis used RNA extracted from colonic mucosa of untreated, antibiotics-treated or metronidazole-treated C57Bl/6J and Nod2-deficient mice in CAC model. Direct comparisons were performed as follow: C57Bl/6J untreated mice vs Nod2-deficient untreated mice, C57Bl/6J antibiotics-treated mice vs Nod2-deficient antibiotics-treated mice, C57Bl/6J metronidazole-treated mice vs Nod2-deficient metronidazole-treated mice, C57Bl/6J untreated mice vs C57Bl/6J antibiotics-treated mice, C57Bl/6J untreated mice vs C57Bl/6J metronidazole-treated mice, Nod2-deficient untreated mice vs Nod2-deficient antibiotics-treated mice, Nod2-deficient untreated mice vs Nod2-deficient metronidazole-treated mice. Indirect comparisons with control data were made across multiple arrays with raw data pulled from different channels for data analysis.
Project description:Instability in the composition of gut bacterial communities, referred as dysbiosis, has been associated with important human intestinal disorders such as Crohn’s disease and colorectal cancer. Here, we show that dysbiosis coupled to Nod2 or Rip2 deficiency suffices to cause an increased risk for intestinal inflammation and colitis-associated carcinogenesis in mice. Aggravated epithelial lesions and dysplasia upon chemical-induced injury associated with loss of Nod2 or Rip2 can be prevented by antibiotics or anti-IL6R treatment. Nod2-mediated risk for intestinal inflammation and colitis-associated tumorigenesis is communicable through maternally-transmitted microbiota even to wild-type hosts. Disease progression was identified to drive complex NOD2-dependent changes of the colonic-associated microbiota. Reciprocal microbiota transplantation rescues the vulnerability of Nod2-deficient mice to colonic injury. Altogether, our results unveil an unexpected function for NOD2 in shaping a protective assembly of gut microbial communities, providing a rationale for intentional manipulation of genotype-dependent dysbiosis as a causative therapeutic principle in chronic intestinal inflammation.
Project description:We previously found that mice deficient in the CD susceptibility gene Nod2 develop small intestinal abnormalities including impaired mucus production by goblet cells and susceptibility to injury, which were associated with interferon-gamma producing intraepithelial lymphocytes. These abnormalities were caused by a striking expansion of a common member of the microbiota, Bacteroides vulgatus. Remarkably, infection of Nod2-deficient mice with the helminth Trichuris muris led to a TH2 response that eliminated B. vulgatus colonization and intestinal abnormalities. In addition, treatment with recombinant IL13 (rIL13) or recombinant IL4 reduced B. vulgatus levels and eliminated goblet cell defects, suggesting that type 2 cytokines alone can reverse intestinal abnormalities in the absence of helminth infection. To determine the mechanism by which type 2 cytokines protected Nod2-/- mice from intestinal abnormalities, we performed RNA-seq on small intestinal tissue from WT, Nod2-/- and rIL13 treated Nod2-/- mice. We found that rIL13 treatment induced a wound healing response characterized by M2 macrophage activation genes. Hence, type 2 cytokines can reverse inflammatory imbalances in the composition of the gut microbiota that occurs in a genetically susceptible host.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:We inflicted TBI to wildetype (wt) mice in order to establish whether the anti-inflammatory agent cyclophosphamide can be used therapeutically. Cyclophosphamide was found to regulate distinct inflammatory cells such as activated microglia separate from invading phagocytes and dendritic cells. Cyclophosphamide postinjury selectively reduces antigen-presenting dendritic cells. Findings show feasibility of drug development to interfere with brain inflammation.
Project description:We inflicted TBI to wildetype (wt) mice in order to establish whether the anti-inflammatory agent cyclophosphamide can be used therapeutically. Cyclophosphamide was found to regulate distinct inflammatory cells such as activated microglia separate from invading phagocytes and dendritic cells. Cyclophosphamide postinjury selectively reduces antigen-presenting dendritic cells. Findings show feasibility of drug development to interfere with brain inflammation. TBI was carried out in injured wt B6 mice for postinjury treatment with cyclophospamide i.p. using saline as a control substance for comparison with injured but untreated mice. Total RNA was prepared from injured cerebral neocortex after three days. RNA samples were also from uninjured wt mice as reference for hybridization on Affymetrix microarrays.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.