Project description:Biliary tract carcinoma (BTC) has a poor prognosis due to limited treatment options. There is therefore urgent need to identify new targets and to design innovative therapeutic approaches. Among potential candidate molecules, we evaluated the non-receptor tyrosine kinase Src, observing promising antitumor effects of its small molecule inhibitor Saracatinib in BTC preclinical models. The presence of an active Src protein was investigated by immunohistochemistry in 19 surgical samples from BTC patients. Upon Saracatinib treatment, the phosphorylation of Src and of its downstream transducers was evaluated in the BTC cell lines TFK-1, EGI-1, HuH28 and TGBC1-TKB. The effect of Saracatinib on proliferation and migration was analyzed in these same cell lines, and its antitumor activity was essayed in EGI-1 mouse xenografts. Saracatinib-modulated transcriptome was profiled in EGI-1 cells and in tumor samples of the xenograft model. Src was activated in about 80% of the human BTC samples. In cultured BTC cell lines, low-dose Saracatinib counteracted the activation of Src and of its downstream effectors, increased the fraction of cells in G0/G1 phase, and inhibited cell migration. At high concentrations (median dose from 2.26 to 6.99 µM), Saracatinib was also capable of inhibiting BTC cell proliferation. In vivo, Saracatinib treatment resulted in delayed tumor growth, associated with an impaired vascular network. We here provide a demonstration that the targeted inhibition of Src kinase by Saracatinib is of therapeutic benefit in preclinical models of BTC. We propose our results as a basis for the design of Saracatinib-based clinical applications. EGI-1 cell line treated with Saracatinib at the dose of 10 µM vs EGI-1 cell line untreated; EGI-1 xenograft treated with Saracatinib at the dose of 25 mg/Kg/die vs EGI-1 xenograft untreated Transcriptional alteration mediated by Saracatinib in vitro and in vivo
Project description:Biliary tract carcinoma (BTC) has a poor prognosis due to limited treatment options. There is therefore urgent need to identify new targets and to design innovative therapeutic approaches. Among potential candidate molecules, we evaluated the non-receptor tyrosine kinase Src, observing promising antitumor effects of its small molecule inhibitor Saracatinib in BTC preclinical models. The presence of an active Src protein was investigated by immunohistochemistry in 19 surgical samples from BTC patients. Upon Saracatinib treatment, the phosphorylation of Src and of its downstream transducers was evaluated in the BTC cell lines TFK-1, EGI-1, HuH28 and TGBC1-TKB. The effect of Saracatinib on proliferation and migration was analyzed in these same cell lines, and its antitumor activity was essayed in EGI-1 mouse xenografts. Saracatinib-modulated transcriptome was profiled in EGI-1 cells and in tumor samples of the xenograft model. Src was activated in about 80% of the human BTC samples. In cultured BTC cell lines, low-dose Saracatinib counteracted the activation of Src and of its downstream effectors, increased the fraction of cells in G0/G1 phase, and inhibited cell migration. At high concentrations (median dose from 2.26 to 6.99 µM), Saracatinib was also capable of inhibiting BTC cell proliferation. In vivo, Saracatinib treatment resulted in delayed tumor growth, associated with an impaired vascular network. We here provide a demonstration that the targeted inhibition of Src kinase by Saracatinib is of therapeutic benefit in preclinical models of BTC. We propose our results as a basis for the design of Saracatinib-based clinical applications.
Project description:COLO 320 (Human colorectal cancer cell line) xenograft: Control (Xenograft without rat mesenchymal stem cells (MSCs)) vs Xenograft with rat MSCs
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.