Project description:This SuperSeries is composed of the following subset Series: GSE29566: Global gene expression analysis of cotton (Gossypium hirsutum L.) under drought stress in leaf tissue. GSE29567: Global gene expression analysis of cotton (Gossypium hirsutum L.) under drought stress during fibre development stages. Refer to individual Series
Project description:Transcriptome analysis in cotton during fibre development stages. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out at fibre development stages (0, 5, 10 and 20 dpa/Days post anthesis). Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:Transcriptome analysis in cotton during fibre development stages. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out at fibre development stages (0, 5, 10 and 20 dpa/Days post anthesis). Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome. Total RNA was isolated from 0 dpa, 5 dpa, fibre bearing ovules of 10 dpa, and fibre bearing ovules of 20 dpa. Samples were collected from both drought induced and control plants. Biotin labeled cRNA was hybridized on Affymertix cotton Genechip Genome array following the Affymetrix protocols. Three biological replicates were maintained.
Project description:Transcriptome analysis in cotton under drought stress. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out in leaf tissue. Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Leaf samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome.
Project description:Transcriptome analysis in cotton under drought stress. To study the molecular response of drought stress in cotton under field condition global gene expression analysis was carried out in leaf tissue. Gossypium hirsutum cv. Bikaneri Nerma was used for the gene expression analysis. Cotton plants were subjected to drought stress at peak flowering stage. Leaf samples were collected when the soil moisture content was 19.5% which is 50% of the normal control plots. Gene expression profiles in drought induced and their respective control samples were analyzed using Affymertix cotton Genechip Genome arrays to study the global changes in the expression of genome. Total RNA was isolated from leaf tissue. Samples were collected from both drought induced and control plants. Biotin labeled cRNA was hybridized on Affymertix cotton Genechip Genome array following the Affymetrix protocols. Three biological replicates were maintained.
Project description:Each plant's architecture, composed of patterns of indeterminate and determinate growth, is defined through the activities of meristems. Understanding the regulation of meristem identity can benefit plant architecture and crop yield. To understand how meristem activities contribute to different architectures in cotton (Gossypium hirsutum), we used RNA-Seq to determine the transcriptomes from meristems isolated from different developmental stages of wild photoperiodic and domesticated day-neutral cotton grown under different photoperiods.
Project description:Drought is one of the primary limiting factors affecting the growth and yield of cotton. Studying the genotypic drought response of plant towards stress stimuli necessitates the development of a standardized, comprehensive and cohesive system that specifically captures information regarding the focal purpose. In-house development of drought specific microarray using drought specific oligonucleotide probes was carried out and the leaf and root tissue of the two-important species Gossypium arboreum and Gossypium hirsutum were tested for genetic traits responses under 10 days’ drought stress. Further the response of these tissue under control and drought stress were studied via inhouse developed oligonucleotide chip.
Project description:A gene expression profiling study on two major cotton species that are cultivated for fibre, Gossypium hirsutum (L.) and Gossypium barbadense (L.), at different stages during fibre development using a printed cDNA microarray was undertaken to identify potential candidate genes for manipulation to improve fibre quality. Keywords: Species comparison, development
Project description:Comparative transcriptome profiles of cotton (G. hirsutum L. cv. Bikaneri narma) during boll development stages (0, 2, 5 and 10 dpa) under bollworm infested biotic stress. Cotton is one of the most commercially important fibre crops in the world and used as a source for natural textile fibre and cottonseed oil. The biotic stress is one of the major constraints for crop production. Cotton bollworm (Helicoverpa armigera) is one the major insect pest in cotton and drastically damages the cotton boll. To decipher the molecular mechanisms involved in cotton boll/fibre cell development, transcriptome analysis has been carried out by comparing G. hirsutum L cv. Bikaneri narma cotton boll samples induced by biotic stress (bollworm infested) and that their respective control cotton bolls collected under field conditions. Cotton bolls were collected at fibre initiation (0, 2 dpa/days post anthesis) and elongation (5, 10 dpa) stages for both control and biotic stress condition and gene expression profiles were analyzed by Affymetrix cotton GeneChip Genome array.
Project description:Cotton is the most important economic crop that provides natural fibre and by-products such as oil and protein. The global gene expression could provide insight into the biological processes underlying growth and development, which involving suites of genes expressed with temporal and spatial controls by regulatory networks. Improvement of cotton fiber in yield and quality is the main goal for molecular breeding, but many previous research have been largely focused on identifying genes only in fibres, so that we ignore seed which may play an important role in the development of fibers. In this study, we constructed and systematically analyzed twenty-one strand-specific RNA-Seq libraries on Gossypium hirsutum L. covering different tissues, organs and development stages, of which approximately 970 million reads were generated. In total, 5,6754 transcripts derived from 2,9541 unigenes were obtained to provide a global view of gene expression for cotton development. Hierarchical clustering of transcriptional profiles suggests that transcriptomes among tissues or organs corresponded well to their developmental relatedness. The organ (tissue)-specific gene expressions were investigated efficiently and provided further insight into the dynamic programming of the transcriptome, in particularly for coordinating development between fiber cell and seed (ovule). We identified series of transcription factors and seed-specific genes, which as the candidate genes should help elucidate key mechanisms and regulatory networks that underlie fiber and seed development. This report identified comprehensive transcriptome changes in different stage of cotton development and will serves as a valuable genome-wide transcriptome resource for cotton breeding. Examination of transcriptome of cotton