Project description:This SuperSeries is composed of the following subset Series: GSE29614: Time Course of Young Adults Vaccinated with Influenza TIV Vaccine during 2007/08 Flu Season GSE29615: Time Course of Young Adults Vaccinated with Influenza LAIV Vaccine during 2008/09 Flu Season GSE29617: Time Course of Young Adults Vaccinated with Influenza TIV Vaccine during 2008/09 Flu Season GSE29618: FACS-sorted cells from Young Adults Vaccinated with Influenza TIV or LAIV Vaccines during 2008/09 Flu Season Refer to individual Series
Project description:Systems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology. Here we used the systems vaccinology approach to study the molecular mechanisms underlying the innate responses to the trivalent inactivated influenza (TIV) and live attenuated influenza (LAIV) vaccination in humans, and to identify early gene signatures that predict the magnitude of the antibody responses to influenza vaccination. During the 2008 influenza season, healthy adults were vaccinated with TIV (6 vaccinees) or LAIV (6 vaccinees), and blood samples isolated at day 0 and at day 7 post-vaccination. Cell subsets (B cells, Monocytes, mDCs and pDCs) were FACS-sorted from frozen PBMCs. Microarrays were performed using amplified total RNA.
Project description:Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons, and in diverse populations is unknown. We applied systems approaches to study immune responses in young and, elderly subjects vaccinated with the seasonal influenza vaccine across 5 consecutive seasons. During the 2010 Influenza season, healthy adults were vaccinated with TIV, and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons, and in diverse populations is unknown. We applied systems approaches to study immune responses in young and, elderly subjects vaccinated with the seasonal influenza vaccine across 5 consecutive seasons. During the 2011 Influenza season, healthy adults were vaccinated with TIV, and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons, and in diverse populations is unknown. We applied systems approaches to study immune responses in young and, elderly subjects vaccinated with the seasonal influenza vaccine across 5 consecutive seasons. During the 2009 Influenza season, healthy adults were vaccinated with TIV, and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems approaches have been used to describe molecular signatures driving immunity to influenza vaccination in humans. Whether such signatures are similar across multiple seasons, and in diverse populations is unknown. We applied systems approaches to study immune responses in young and, elderly subjects vaccinated with the seasonal influenza vaccine across 5 consecutive seasons. During the 2010 Influenza season, healthy adults were vaccinated with TIV, and blood samples isolated at days 0, 1, 3, 7, 14 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.
Project description:Systems vaccinology has emerged as an interdisciplinary field that combines systems wide measurements and network and predictive modeling applied to vaccinology. Here we used the systems vaccinology approach to study the molecular mechanisms underlying the innate responses to the trivalent inactivated influenza (TIV) and live attenuated influenza (LAIV) vaccination in humans, and to identify early gene signatures that predict the magnitude of the antibody responses to influenza vaccination. During the 2008 influenza season, healthy adults were vaccinated with TIV (28 vaccinees), and blood samples isolated at days 0, 3, 7 post-vaccination. Microarrays were performed using total RNA extracted from the peripheral blood mononuclear cells of vaccinees.