Project description:Integrative regulatory mapping indicates that the RNA-binding protein HuR (ELAVL1) couples pre-mRNA processing and mRNA stability In this dataset, we employed two distinct experiments. 1) HuR RIP-chip to identify mRNA targets of HuR. 2) HuR knockdown to identify mRNAs whose expression are dependent on HuR. All 12 samples were normalized with PLIER using Affymetrix power tools. To identify RNA targets of HuR, HuR RIP samples were compared to Mock RIP samples. To identify RNA regulated by HuR, HuR knockdown samples were compared to mock knockdown samples.
Project description:Integrative regulatory mapping indicates that the RNA-binding protein HuR (ELAVL1) couples pre-mRNA processing and mRNA stability In this dataset, we employed two distinct experiments. 1) HuR RIP-chip to identify mRNA targets of HuR. 2) HuR knockdown to identify mRNAs whose expression are dependent on HuR.
Project description:Elavl1/HuR is a ubiquitous and conserved RNA-binding protein that binds to a U-rich RNA motif that shuttles between nucleus and cytoplasm. In epithelia, the elevated expression of HuR assumingly promotes degeneration and cancer suggesting that its generic suppression may provide clinical benefits. In this study we focused on biological and clinical functions of HuR in intestinal epithelial cells and we presented evidence that changes in HuR levels induce polarized distortions in these cells to support different pathologic outcomes. In this experiment we investigate Elavl1 targets via Elavl1 Immunopercipitation (RIP-chip) by arrays and compare relative to background. Control and TgATF-HuR mice were treated with Dimethylhydrazine (DMH)/Dextran Sodium Sulphate (DSS) for 60 days and tumors where dissected from large intestines; those with sizes between 10-15mm2 were pooled to generate samples with 4 tumors/sample and snap frozen. Three samples per genotype were used either for RIP analyses or total RNA extraction. Isolated RNA was used for microarray or qRT-PCR analyses.
Project description:Elavl1/HuR is a ubiquitous and conserved RNA-binding protein that binds to a U-rich RNA motif that shuttles between nucleus and cytoplasm. In epithelia, the elevated expression of HuR assumingly promotes degeneration and cancer suggesting that its generic suppression may provide clinical benefits. In this study we focused on biological and clinical functions of HuR in intestinal epithelial cells and we presented evidence that changes in HuR levels induce polarized distortions in these cells to support different pathologic outcomes. Here we study the differentiality in mRNA abundance between Control mice and mice overexpressing Elavl1 (TgATF-HuR). Control and TgATF-HuR mice were treated with Dimethylhydrazine (DMH)/Dextran Sodium Sulphate (DSS) for 60 days and tumors where dissected from large intestines; those with sizes between 10-15mm2 were pooled to generate samples with 4 tumors/sample and snap frozen. Three samples per genotype were used either for RIP analyses or total RNA extraction. Isolated RNA was used for microarray or qRT-PCR analyses.
Project description:RNA-binding proteins coordinate the fates of multiple RNAs, but the principles underlying these global interactions remain poorly understood. We elucidated regulatory mechanisms of the RNA-binding protein HuR, by integrating data from diverse high-throughput targeting technologies, specifically PAR-CLIP, RIP-chip, and whole-transcript expression profiling. The number of binding sites per transcript, degree of HuR-association, and degree of HuR-dependent RNA stabilization were positively correlated. Pre-mRNA and mature mRNA containing both intronic and 3' UTR binding sites were more highly stabilized than transcripts with only 3' UTR or only intronic binding sites, suggesting that HuR couples pre-mRNA processing with mature mRNA stability. We also observed HuR-dependent splicing changes and substantial binding of HuR in poly-pyrimidine tracts of pre-mRNAs. Comparison of the spatial patterns surrounding HuR and miRNA binding sites provided functional evidence for HuR-dependent antagonism of proximal miRNA-mediated repression. We conclude that HuR coordinates gene expression outcomes at multiple interconnected steps of RNA processing. HuR (ELAVL1) PAR-CLIP
Project description:The purpose of the study was to identify mRNA bound to HuR in the presence of doxorubicin in MCF7 cells. We collected cytoplasmic RNA from untreated and treated cells and detected differentially expressed genes (DEGs). We also coimmunoprecipitated HuR and IgG (as control) from doxorubicin treated cells. Comparison between HuR RIP and IgG RIP signals was used to discriminate specific mRNA bound to HuR. HuR coimmmunoprecipitated material was hybridized together with cytoplasmic mRNA of doxorubicin treated cells, enabling the fold enrichment calculation and the selection of mRNAs bound to HuR. Keywords: RIP-Chip, HuR, doxorubicin, MCF7, HuR consensus binding, post-transcriptional regulation. We subjected MCF7 cells to starvation for 24h and then we added doxorubicin at final concentration of 10 uM, profiling before and after 4 hours of treatment in biological quadruplicate (only on cytoplasmic mRNAs, as HuR was found in the cytoplasm). Differentially expressed genes, altered during the treatment, were identified. Data derived from HuR RIP-Chip and IgG RIP-Chip (in biological quadruplicate) allowed the identification of specific mRNAs bound to HuR. The comparison between HuR RIP-Chip and cytoplasmic extracts from doxorubicin treated cells (in biological triplicate) identified those genes that were more strictly bound to HuR independently from their expression levels.
Project description:The purpose of the study was to identify mRNA bound to HuR in the presence of doxorubicin in MCF7 cells. We collected cytoplasmic RNA from untreated and treated cells and detected differentially expressed genes (DEGs). We also coimmunoprecipitated HuR and IgG (as control) from doxorubicin treated cells. Comparison between HuR RIP and IgG RIP signals was used to discriminate specific mRNA bound to HuR. HuR coimmmunoprecipitated material was hybridized together with cytoplasmic mRNA of doxorubicin treated cells, enabling the fold enrichment calculation and the selection of mRNAs bound to HuR. Keywords: RIP-Chip, HuR, doxorubicin, MCF7, HuR consensus binding, post-transcriptional regulation.
Project description:Alternative 3’-terminal exons, which use intronic polyadenylation sites, are generally unconserved and lowly expressed, while the main gene products end in the last exon of genes. In this study, we discover a class of human genes, where the last exon appeared recently during evolution, and the major gene product uses an alternative 3’-terminal exon corresponding to the ancestral last exon of the gene. This novel class of alternative 3’-terminal exons are down-regulated on a large scale by doxorubicin, a cytostatic drug targeting topoisomerase II, and play a role in cell cycle regulation, including centromere-kinetochore assembly. The RNA-binding protein, HuR/ELAVL1 is a major regulator of this specific set of alternative 3’-terminal exons. HuR binding to the alternative 3’-terminal exon in the pre-messenger RNA promotes its splicing, and is reduced by topoisomerase inhibitors. These findings provide new insights into the evolution, function and molecular regulation of alternative 3’-terminal exons.