Project description:We identified human-specific gene expression patterns in the brain by comparing expression with chimpanzee and rhesus macaque Comparative gene expression in human, chimpanzee, and rhesus macaque brain
Project description:This SuperSeries is composed of the following subset Series: GSE33010: Human-specific patterns of gene expression in the brain (Arrays) GSE33587: Human-specific patterns of gene expression in the brain (RNA-Seq) Refer to individual Series
Project description:We identified human-specific gene expression patterns in the brain by comparing expression with chimpanzee and rhesus macaque. DpnII tag-based libraries were generated from human, chimpanzee, and rhesus macaque brain (frontal pole, hippocampus, caudate nucleus), and sequenced using an Illumina Genome Analyzer.
Project description:Accelerated brain development is a unique feature of the human species. Not only the size but also morphology, in particular the connections between frontal cortex and basal ganglia distinguish the human brain from great apes and other primates. Recent findings suggest that structural features which may be important for language acquisition are influenced by FOXP2, key regulator of CNTNAP2. CNTNAP2 is one of the largest genes in the human genome, encompassing 2.3 Mb. It encodes a neurexin with essential roles in the vertebrate nervous system. The aim of our study was to compare the methylation patterns of CNTNAP2 in human and chimpanzee brains, assuming that epigenetic regulation is essential for brain development and human language abilities. To this end, we designed a NimbleGen tiling array covering the entire human CNTNAP2 gene plus 0.1 Mb up- and downstream flanking sequence with an average resolution of 13 bp. Methylated DNA ImmunoPreciptation (MeDIP) was used to enrich cytosine-methylated DNA fragments for downstream analysis with high-resolution tiling arrays.
Project description:Objective. Intracortical brain interfaces are an ever evolving technology with growing potential for clinical and research applications. The chronic tissue response to these devices traditionally has been characterized by glial scarring, inflammation, oxidative stress, neuronal loss, and blood-brain barrier disruptions. The full complexity of the tissue response to implanted devices is still under investigation. Approach. In this study, we have utilized RNA-sequencing to identify the spatiotemporal gene expression patterns in interfacial (within 100 µm) and distal (500 µm from implant) brain tissue around implanted silicon microelectrode arrays. Naïve, unimplanted tissue served as a control. Main results. The data revealed significant overall differential expression (DE) in contrasts comparing interfacial tissue vs naïve (157 DE genes), interfacial vs distal (94 DE genes), and distal vs naïve tissues (21 DE genes). Our results captured previously characterized mechanisms of the foreign body response, such as astroglial encapsulation, as well as novel mechanisms which have not yet been characterized in the context of indwelling neurotechnologies. In particular, we have observed perturbations in multiple neuron-associated genes which potentially impact the intrinsic function and structure of neurons at the device interface. In addition to neuron-associated genes, the results presented in this study identified significant DE in genes which are associated with oligodendrocyte, microglia, and astrocyte involvement in the chronic tissue response. Significance. The results of this study increase the fundamental understanding of the complexity of tissue response in the brain and provide an expanded toolkit for future investigation into the bio-integration of implanted electronics with tissues in the central nervous system.